
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and 
Dissertations 

2020 

Postprandial glycemic response of whole peas and lentils and Postprandial glycemic response of whole peas and lentils and 

their flours in adults with type 2 diabetes their flours in adults with type 2 diabetes 

Mariel Camacho-Arriola 
Iowa State University 

Follow this and additional works at: https://lib.dr.iastate.edu/etd 

Recommended Citation Recommended Citation 
Camacho-Arriola, Mariel, "Postprandial glycemic response of whole peas and lentils and their flours in 
adults with type 2 diabetes" (2020). Graduate Theses and Dissertations. 18030. 
https://lib.dr.iastate.edu/etd/18030 

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and 
Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and 
Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, 
please contact digirep@iastate.edu. 

http://lib.dr.iastate.edu/
http://lib.dr.iastate.edu/
https://lib.dr.iastate.edu/etd
https://lib.dr.iastate.edu/theses
https://lib.dr.iastate.edu/theses
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F18030&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/18030?utm_source=lib.dr.iastate.edu%2Fetd%2F18030&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

Postprandial glycemic response of whole peas and lentils and their flours  
in adults with type 2 diabetes 

 
by 
 

Mariel Camacho-Arriola 
 
 

A thesis submitted to the graduate faculty 

in partial fulfillment of the requirements for the degree of  

MASTER OF SCIENCE 

 

Major: Food Science and Technology 

 

Program of Study Committee: 
Donna Winham, Co-major Professor 
Stephanie Clark, Co-major Professor 

Joey Talbert 
 
 
 

The student author, whose presentation of the scholarship herein was approved by the program 
of study committee, is solely responsible for the content of this thesis. The Graduate College will 
ensure this thesis is globally accessible and will not permit alterations after a degree is conferred.  

 
 

 
Iowa State University 

Ames, Iowa 

2020 

 
Copyright © Mariel Camacho-Arriola, 2020. All rights reserved. 

 

 



www.manaraa.com

ii 

DEDICATION 

I would like to dedicate this thesis to my mom - my first and favorite educator in my life. 

You instilled in me an appreciation for education and a continual pursuit of growth opportunities. 

This is possible because of your support throughout the years. Thank you for your love.  



www.manaraa.com

iii 

TABLE OF CONTENTS 

Page 

LIST OF FIGURES .........................................................................................................................v	

LIST OF TABLES ......................................................................................................................... vi	

NOMENCLATURE ..................................................................................................................... vii	

ACKNOWLEDGMENTS ........................................................................................................... viii	

ABSTRACT ................................................................................................................................... ix	

CHAPTER 1. INTRODUCTION ....................................................................................................1	
Thesis Goals ...............................................................................................................................1	
Thesis Hypotheses ......................................................................................................................2	
Thesis Organization ....................................................................................................................2	

CHAPTER 2. REVIEW OF LITERATURE ...................................................................................3	
Pulses ..........................................................................................................................................3	

Definition ..............................................................................................................................3	
Recommended Intake of Pulses ............................................................................................3	
Current Consumption ............................................................................................................4	
Sustainability .........................................................................................................................5	
Nutrition ................................................................................................................................5	
Composition ..........................................................................................................................7	
Pulses included in the study ..................................................................................................7	

Diabetes ......................................................................................................................................8	
The Nutrition Transition ........................................................................................................8	
Type 2 Diabetes Mellitus (T2DM) ........................................................................................9	
Prevalence of Type 2 Diabetes (T2DM) .............................................................................11	
Treatment Methods for Diabetes .........................................................................................11	

Glycemic Response ..................................................................................................................18	
Relationship with Pulses .....................................................................................................18	
Studies Using Pulses ...........................................................................................................23	

Pulse Processing .......................................................................................................................34	
Effect on Resistant Starch ...................................................................................................35	
Pulse Flours .........................................................................................................................36	
Dehulling .............................................................................................................................38	
Milling .................................................................................................................................39	

CHAPTER 3. MATERIALS AND METHODS ...........................................................................42	
Study Design .............................................................................................................................42	
Study Population .......................................................................................................................42	

Sample Size .........................................................................................................................44	
Materials ...................................................................................................................................44	

Pulses ...................................................................................................................................44	



www.manaraa.com

iv 

Forms ...................................................................................................................................58	
Data Collection Procedure ........................................................................................................59	
Data Handling ...........................................................................................................................63	

Descriptive Analysis ...........................................................................................................63	
ANOVA ..............................................................................................................................63	
Blood Handling and Analysis .............................................................................................64	

CHAPTER 4. RESULTS & DISCUSSION ..................................................................................66	
Study Population .................................................................................................................66	
Postprandial glucose (PPG) .................................................................................................74	
Statistical Power ..................................................................................................................83	

CHAPTER 5. CONCLUSIONS & RECOMMENDATIONS FOR FUTURE RESEARCH .......85	

REFERENCES ..............................................................................................................................88	

APPENDIX A. INSTITUTIONAL REVIEW BOARD APPROVAL ........................................111	

APPENDIX B. STUDY PROCEDURES AND PAYMENT SCHEDULE ................................113	

APPENDIX C. PARTICIPANT INSTRUCTIONS ....................................................................114	

APPENDIX D. RECRUITMENT HALF PAGE FLYER ...........................................................117	

APPENDIX E. RECRUITMENT FULL PAGE FLYER ............................................................118	

APPENDIX F. MEDICAL HISTORY QUESTIONNAIRE .......................................................119	

APPENDIX G. FOOD FREQUENCY QUESTIONNAIRE .......................................................120	

APPENDIX H. SAMPLE SIZE FORMULA ..............................................................................124	

APPENDIX I. DRY WEIGHT BASIS EQUIVALENCY CALCULATIONS ...........................125	

APPENDIX J. FOOD LOG .........................................................................................................127	

APPENDIX K. INTERNATIONAL PHYSICAL ACTIVITY QUESTIONNAIRE ..................131	

APPENDIX L. ANTHROPOMETRIC METHODS ...................................................................133	

APPENDIX M. STANDARD OPERATING PROCEDURE FOR OBTAINING AND 
WORKING WITH HUMAN BLOOD SAMPLES .....................................................................137	



www.manaraa.com

v 

LIST OF FIGURES 

Page 

Figure 4.1. Consort flow diagram for clinical trial participants ................................................... 67	

Figure 4.2. Estimated marginal means of time point and treatment type* ................................... 75	

Figure 4.3. Effect of treatment on postprandial net glucose (n = 11) ........................................... 80	

Figure 4.4. Incremental area under the curve differences in net glucose 0-180 minutes 
postprandial (n = 11) ................................................................................................ 82	



www.manaraa.com

vi 

LIST OF TABLES 

Page 

Table 2.1. 2017 U.S. Pulse Quality Survey Summary Findings ......................................................8	

Table 2.2. Approved medications for T2DM. Modified from Kahn, Cooper, Prato, 2014. ..........13	

Table 3.1. Nutrient differences between commercial and study flours. ........................................45	

Table 3.2. Percentage Division of Flour Particle Size ...................................................................47	

Table 3.3. Pulse Equivalent Amounts ............................................................................................48	

Table 3.4. Nutrient Composition of Test Meals ............................................................................49	

Table 3.5. Total starch analysis by Eurofins and NDSU. ..............................................................51	

Table 3.6. Resistant starch analysis of pulses (NDSU). ................................................................51	

Table 3.7. Mineral analysis of pulses. ............................................................................................53	

Table 4.1. Descriptive characteristics of participants ....................................................................69	

Table 4.2. Percentage of Participants Meeting U.S. Dietary Guidelines .......................................70	

Table 4.3. Macronutrient composition of dietary intake 24 hours prior to test days .....................72	

Table 4.4. Macronutrient composition of evening meals consumed prior to test days .................73	

Table 4.5. Incremental changes in blood glucose for all treatments ..............................................79	

Table 4.6. Postprandial areas under the curve for blood glucose ..................................................82	
 



www.manaraa.com

vii 

NOMENCLATURE 

 T2DM Type 2 Diabetes Mellitus 

 GI Glycemic Index 

 TDF Total Dietary Fiber 

 IDF Insoluble Dietary Fiber 

 SDF Soluble Dietary Fiber 

 SDS Slowly Digestible Starch 

 RDS Rapidly Digestible Starch 

 RS Resistant Starch 

 IPAQ International Physical Activity Questionnaire 

 FFQ Food Frequency Questionnaire 

 BMI Body Mass Index 

 iAUC Incremental Area Under the Curve 

 ANOVA Analysis of Variance 

 



www.manaraa.com

viii 

ACKNOWLEDGMENTS 

I would like to thank my co-major professors Dr. Donna Winham and Dr. Stephanie 

Clark, for their guidance and support throughout the course of my graduate work. Through their 

mentorship, I have grown professionally in many ways. I would like to thank my committee 

member, Dr. Joey Talbert, for his support throughout the course of this research. 

In addition, I would also like to thank my friends, colleagues, and professors, for making 

my time at Iowa State University a rewarding experience. My peers Molly Hiller, Elizabeth 

Davitt, Michelle Herr, Amanda Skalka, and Mark Bollom have been great sources of support 

during my time at Iowa State. You all rock! 

Huge thanks to my partner David, and my family for their unwavering support and 

encouragement. 

I want to also offer my appreciation to those who were willing to participate in my 

clinical trial-without whom, this research would not have been possible. You were all great 

participants and I enjoyed waking up early at the crack of dawn to meet with you. 



www.manaraa.com

ix 

ABSTRACT 

With an increasing diabetes problem, foods that benefit our health are more important 

than ever. Whole peas, lentils, and other dry grain pulses yield lower postprandial glycemic 

responses in adults with type 2 diabetes. Additionally, pea and lentil flours are increasingly used 

in products to improve nutrition quality and functionality. However, the impact of pulse flours on 

blood glucose versus the whole form of the pulse requires more research. This 5x5 cross-over 

clinical trial seeks to address this research gap. 

The glycemic effects of 5 treatment meals containing ½ cup whole pulse and dry weight 

equivalent of flour, or a Glucola control beverage, were tested in adults with type 2 diabetes. 

Venous blood samples were collected at baseline and at 30, 60, 90, 120, 150, and 180 minutes 

post-meal consumption and analyzed for glucose concentrations. Significant mean differences 

when comparing treatment, time, and treatment x time interactions were found, with whole 

pulses exhibiting better glycemic effects than the control treatment. Responses to pulse flour 

meals were not always significantly different from the control treatment, but usually different 

from the whole pulses. 

There may be several explanations for this related to nutrition and physiological 

properties of the pulses. Future research should include investigating the mechanisms behind 

possible differences between pulses and pulse forms. There should be caution when 

incorporating pulse flours into products and claiming similar health benefits as whole pulses. 
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CHAPTER 1.    INTRODUCTION 

Pulses are a dry staple in several parts of the world, except for the United States. In 

response to lack of consumption, efforts have been made to promote pulses. Many avenues of 

promotion focus on the health benefits of pulses, which are impressive. Their high fiber and 

protein content make them a beneficial food for health conditions, such as type 2 diabetes. This 

health benefit is one of the most widely recognized for whole pulses. 

Since 2005, the Dietary Guidelines for Americans have recommended increased pulse 

consumption due to their high nutrition content and health benefits. Application-based efforts to 

increase pulse consumption include using pulse flours in products otherwise conventionally 

made with traditional grains. As we diversify the uses of pulses by using it in novel forms, it is 

necessary to consider the implications of nutritional and structural changes to the pulses on the 

observed health benefits. This research investigates the health benefits of whole pulses and pulse 

flours as it relates to the glycemic response, a daily concern for adults with type 2 diabetes.  

Thesis Goals 

The main objective of this research was to determine the glycemic response of whole 

peas and lentils versus their flour equivalents as part of a meal in adults with type 2 diabetes 

(T2DM). 

Goal 1: Determine the postprandial glycemic response to whole peas and lentils in 

comparison to flour counterparts. 

Goal 2: Use equivalent amount of flours to whole pulses on a dry weight basis based on a 

standard serving size (1/2 cup). 

Goal 3: Match available carbohydrates (CHO) for all treatments. 
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Goal 4: Approach the project by highlighting connections between the food science and 

human nutrition disciplines.  

Thesis Hypotheses 

It was hypothesized that: 1) all pulse treatments would result in a lower postprandial 

glycemic response than a control treatment; 2) whole pulses would lower the glycemic response 

more than flours, and 3) there would be no difference when comparing whole peas and whole 

lentils, and comparing pea flour and lentil flour.  

Thesis Organization 

To understand the importance of pulses, their processing, and their health benefits 

associated with T2DM, a literature review provides background and the need for the current 

research project. An extensive methods section follows and details information on the pulse 

flours, test procedures, and data analysis. The results from this study are presented in Chapter 4. 

The thesis closes with a summary of findings, conclusions, and suggestions for future work. 

Resources used throughout this study are included in the appendices. 
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CHAPTER 2.    REVIEW OF LITERATURE 

Pulses 

Definition 

Pulses are an important food staple and include four main commercial crops in the United 

States:  beans, peas, lentils, and chickpeas (USA Dry Pea & Lentil Council, n.d.).  Pulses are 

members of the Leguminosae or Fabaceae family of plants, which are noted for their high 

nutrition content as a food, and their ability to fix nitrogen in the soil from a sustainable 

agriculture perspective.  Other common legume crops include soybeans, peanuts, alfalfa, and 

fresh peas and beans. Pulses are a sub-classification of legumes, that are exclusively harvested 

for their dry seeds. 

The United Nations Food and Agriculture Organization (FAO) declared 2016 the 

International Year of Pulses to highlight the essential role of these crops in sustainable food 

systems (Food and Agriculture Organization of the United Nations [FAO], 2016). The FAO 

recognizes 11 commonly consumed pulse classes:  dry beans, dry broad beans, dry peas, 

chickpea, dry cowpea, pigeon pea, lentil, Bambara groundnut, vetch, lupins, and other minor 

pulses (FAO, n.d.). There are several varieties within these classes, totaling more than 80 pulse 

species (Tiwari et al., 2011). 

Recommended Intake of Pulses 

A weekly serving of 1½ cups of pulses is recommended by the United States Department 

of Agriculture (USDA) and United States Department of Health and Human Services (HHS) for 

a healthy eating pattern for adults (United States Department of Health and Human Services & 

[HHS] & United States Department of Agriculture [USDA], 2015).  However, the intake 

recommended changes depending on dietary patterns, gender, and caloric needs, ranging from 1 
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to 3 cups per week for adults (USDA & HHS, 2015). In the United States, pulses are a part of the 

protein-rich (meat and alternatives) and the vegetable food groups (USDA & HHS, 2015). One 

serving of pulses is equivalent to 1 serving of vegetables or two ounces of meat (USDA, n.d.). A 

serving size of pulses is ½ cup of cooked pulses or ¼ cup raw pulses prior to cooking (USDA, 

n.d.; HHS & USDA, 2015).   

On a daily basis, at least ½ cup cooked pulses improve diet quality and result in higher 

nutrient intakes (Mitchell et al., 2009; Mudryj et al., 2012). This amount (1/2 cup or 100 g) is the 

recommended international standard and provides nutrients which are commonly under 

consumed by several age-sex groups (Marinangeli et al., 2017). Pulses add fiber, protein, iron, 

and a number of other minerals to the diet (Mudryj et al., 2012). The nutrition profile of pulses 

has been shown to be beneficial for non-communicable diseases such as cardiovascular disease 

and diabetes (Duranti, 2006). Further details on the nutritional profile of pulses is discussed later. 

Current Consumption 

This food group has been consumed for at least 10,000 years (Leterme & Muũoz, 2002). 

Globally, pulses are the second most important food group, with cereal grains being first (Tiwari 

et al., 2011). Pulse consumption per capita, as well as the consumption growth rate, is double in 

developing countries compared to developed countries (Akibode & Maredia, 2012). The total 

consumption of pulses in developing countries is over 10 kg/capita/year, while it is below 3 

kg/capita/year in developed countries (Akibode & Maredia, 2012).  

Though they are a staple in many regions of the world (Winham et al., 2008; Sokhansanj 

& Patil, 2003), pulse consumption is low in the Western diet (Akibode & Maredia, 2012). In 

2018, the per capita availability of dry beans was 9.62 pounds per person in the United States 

(USDA Economic Research Service, 2019), but availability does not necessarily translate to 

actual consumption. In 2015, the USDA reported consumption of the vegetable group, with 
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legumes as a subgroup. Legumes made up just 6% of vegetable consumption (USDA, 2016). The 

USDA also reported average weekly pulse consumptions of 0.8 to 1.1 cups for adult males aged 

19 or older, falling short of the recommended 1.5 to 3.0 cups (dependent on age group) (HHS & 

USDA, 2015). Likewise, females fell short of the recommended 1.0 to 2.0 cups for adult female 

age groups (19 years or older), with an average weekly consumption of 0.5 to 0.7 cups (HHS & 

USDA, 2015). As noted earlier, a ½ cup is a standard serving size for (cooked) pulses (USDA, 

n.d.; HHS & USDA, 2015). Based on these estimates from national survey data, it is likely that 

that most Americans do not eat a ½ cup daily serving of pulses according to their weekly 

patterns. Pulse processing, discussed in the Pulse Processing section of this thesis, is vital in 

efforts to increase pulse consumption. 

Sustainability 

Pulses are an attractive crop for sustainability as well. Globally, there is a push for 

reduced meat consumption, with growing interest in plant proteins. Compared to meat products, 

pulses have a higher nutrient value, as well as a lower cost, per 100 kcal (Drewnowski, 2010). In 

addition to being a non-meat protein source, pulses have a biological nitrogen fixation ability 

(Hossain et al., 2016). These leguminous crops have a symbiotic relationship with rhizobial 

bacteria in soil and can fixate nitrogen. Through this ability, less inorganic N-fertilizer is used, 

which can mitigate detrimental environmental effects, such as water pollution from run-off, the 

release of greenhouse gases into the atmosphere, and our food production system’s carbon 

footprint (Hossain et al., 2016; Gan et al., 2011; Harrison, 2011). Pulses are also a viable 

alternative to ethanol fuel, with bacteria in the roots producing butanol (Tigunova et al., 2013). 

Nutrition 

Both cereal grains and pulse crops have similar contents of total carbohydrates, fat, and B 

vitamins. However, traditionally used cereal grains, such as wheat, corn, rice, barley, and oats, 
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are limited in their nutrition (Frohlich et al., 2014). On the other hand, nutrients that set pulses 

apart from other grains are their higher amounts of protein, iron, folate, and minerals (Singh, 

2017), which make pulses a viable alternative to these traditional ingredients (Frohlich et al., 

2014). 

Pulses are a vital food group, especially in the context of the nutrition transition and 

diabetes, with their plethora of health benefits. These two terms will be defined in the following 

Diabetes section of this thesis. Drewnowski and Rehm (2013) determined that pulses are a plant-

based food with one of the highest nutritional values per dollar, as well as among the vegetables 

with the lowest cost per gram. 

Pulses have a complementary relationship with whole grain cereal crops, in terms of 

composition, anti-inflammatory properties, and impact on the gut microbiome (Awika et al., 

2018). Pulses can also be a complementary protein source due to their lysine content, which is 

low in cereal grains (Erbersdobler et al., 2017). Considering this, the implementation of pulses 

into whole grain cereal products is highly recommended (Akiwa et al., 2018). 

Overall, pulses have several nutritional properties that make them attractive for product 

development (Mazumdar et al., 2016). Nutritional properties include high protein, high fiber, low 

glycemic index, and gluten-free and vegetarian status (Rohwer, 2015; Foschia et al., 2017; 

Rizkalla et al., 2002). Pulses are also high in the micronutrients folate, iron, zinc, and potassium 

(Winham et al., 2008). Several nutrient content claims could be made for pulses (100 g cooked 

serving) regarding their macronutrients, minerals, and vitamins (Marinangeli et al., 2017). The 

major health benefit of pulses is the control and management of several diseases like 

cardiovascular disease and type 2 diabetes (Duranti, 2006).  
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Composition 

While pulses overall are known for their nutritional content, there are differences in 

composition among family, species, and even within market classes. The protein, carbohydrate, 

and lipid composition of pulses varies greatly (Hall et al., 2017). There are also differences in 

chemical composition between and within species (Rochfort & Panozzo, 2007). Additionally, 

differences in varieties, seed composition, physical properties, and storage conditions are known 

to affect the cooking quality (Gubbels & Ali-Khan, 1991; Gubbels et al., 1985; Kaur et al., 2009; 

Sefa-Dedeh & Stanley, 1979; Singh et al., 2004). 

Pulses included in the study  

Our study examines Hampton cultivar dry peas (Pisum sativum) and Avondale cultivar 

lentils (Lens culinaris) from the 2017 crop year.  These two pulse varieties were chosen because 

they were of economic importance in the USA Dry Pea & Lentil Council 2015 Strategic Plan.   

Hampton dry peas are very hardy and are the first field pea in the United States to be 

resistant to two prominent aphid-vectored virus diseases: pea enation mosaic virus and bean 

leafroll virus (Suszkiw, 2015). This variety bred by Dr. Rebecca McGee is also resistant to 

fungal disease pathogens (Suszkiw, 2015). Additionally, the cultivar has a high yield potential 

compared to commercial cultivars (Suszkiw, 2015). This, along with its disease resistance, make 

it a particularly appealing cultivar to grow and work with (Suszkiw, 2015). 

Avondale lentils were also bred by Dr. McGee and offer disease resistance like the 

Hampton peas. This variety was bred to improve Richlea lentils, which have high yields but are 

vulnerable to the fungi ascochyta (Cahill Seeds, n.d.). Ascochyta blight results in a loss of seed 

and yield and is resistant to frequently applied fungicides (Markell et al., 2008). The Avondale 

cultivar answers the call for a high yield disease resistant lentil (Cahill Seeds, n.d.; Pulse USA, 

n.d.). 
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The 2017 Northern Pulse Growers Association (NPGA) U.S. Pulse Quality Survey 

findings (Northern Pulse Growers Association [NPGA], 2018) on Hampton dry peas and 

Avondale lentils is summarized in Table 2.1. The composition of peas and lentils appears very 

similar, except for the higher starch content in lentils. The Avondale variety had the highest 

starch content compared to all other lentil cultivars observed in the 2017 U.S. Pulse Quality 

Survey (NPGA, 2018). The most abundant component for both the 2017 lentils and peas was 

starch (NPGA, 2018), which other previous work on lentils and peas found as well (Li & 

Ganjyal, 2017). Although this study only looks at two specific cultivars, it is important to note 

that variety will influence some characteristics, such as protein, starch and ash content (Wang & 

Daun, 2006; Wang et al., 2009). Postharvest factors, including processing and cooking methods, 

can also affect nutrition such as the protein composition (Wang et al., 2009).    

Table 2.1. 2017 U.S. Pulse Quality Survey Summary Findings 

Property Avondale lentils Hampton peas 

Moisture 9.3% 8.3% 
Ash 2.5% 2.6% 
Fat 2.1% 1.8% 
Protein 22.3% 23.1% 
Starch 46.9% 42.1% 

 

Diabetes 

The Nutrition Transition 

The 20th and 21st century saw major shifts in diet from legumes, vegetables, and fruits to 

more refined and processed foods, which is a part of a complex historical phenomenon, termed 

the nutrition transition (Popkin, 2015). This shift started in the mid-1900s and is now seen in all 

regions and countries (Popkin et al., 2012). The nutrition transition involves both dietary and 

physical activity changes that promote inactivity and unhealthy eating habits (Mattei et al., 
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2015). The transition is attributed to changes caused by globalization and urbanization (Mattei et 

al., 2015). More specific factors include access to low-cost food, survival no longer being 

dependent on physical activity, and technology (Cohen, 2008; Khush, 2003; O’Keefe et al., 

2011).  

Western diets are associated with the nutrition transition, as this diet typically consists of 

refined carbohydrates, added sugars, fats and animal-source foods (Popkin et al., 2012). Dietary 

patterns such as this are attributed to a rise in non-communicable diseases, like T2DM and 

cardiovascular diseases (Popkin, 2015). For example, meat-based protein sources in excess can 

aggravate postprandial hyperglycemia due to the high calorie and saturated fat content (O’Keefe 

& Bell, 2007; Jakulj et al., 2007). 

Metabolic conditions, such as T2DM, are attributed to our diets, and rightfully so. A main 

modifiable risk factor for T2DM is diet (Ventura et al., 2009). Diets with minimally processed 

foods, such as the Mediterranean diet, are recommended for optimal postprandial glucose levels, 

as well as a reduced risk of chronic diseases (Lichtenstein et al., 2006; Mente et al., 2009). Pulses 

can meet our recommended dietary needs, as they are minimally processed compared to refined 

food items and offer nutrients that the Western diet often lacks (O’Keefe et al., 2008; Popkin, 

2015). 

Type 2 Diabetes Mellitus (T2DM) 

Diabetes is defined by the American Diabetes Association (ADA) as a metabolic 

condition involving impaired insulin action and β-cell insulin secretion, resulting in elevated 

blood glucose (American Diabetes Association [ADA], 2000). Blood glucose is directly 

increased by the consumption of carbohydrates, around 10 minutes after starting a meal due to 

carbohydrate absorption (ADA, 2001). Clinical diabetes is described as fasting hyperglycemia, 
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along with increased hepatic glucose production (ADA, 2000). T2DM involves a loss of beta-

cell insulin secretion, with a correlation to developed insulin resistance (ADA, 2019).  

Several complications are associated with diabetes, including retinopathy, neuropathy, 

amputations, and cardiovascular disease (ADA, 2014). The ADA recognizes T2DM as a 

heterogeneous disease, meaning that it can be caused by several factors, including genetic and 

environmental (ADA, 2019). 

A fasting postprandial glucose value of ³126 mg/dL (7.0 mmol/L) is considered in the 

diabetic range. Individuals with T2DM have high fasting blood glucose due to a lack of 

regulation of hepatic glucose production (Blaslov et al., 2018). Contributing mechanisms to this 

are glucose precursors and free fatty acid oxidation (Blaslov et al., 2018). Other important 

factors are related to glucagon and insulin: an enhanced or decreased sensitivity, respectively 

(Blaslov et al., 2018). 

Hemoglobin A1c (HbA1c) 

A hemoglobin A1c (HbA1c) of ³6.5% (11.1 mmol/L) after an oral glucose tolerance test 

is also a criterion for the diagnosis of diabetes. HbA1c estimates average blood sugar levels for 

the past two to three months (ADA, n.d.). It measures how much hemoglobin in the body is 

glycated or covered with sugar (Mayo Clinic, 2018). 

In adults without diabetes, either normal glycemic or with pre-diabetes, high HbA1c 

levels are associated with the development of metabolic syndrome (Kang et al., 2015; Veeranna 

et al., 2011). Metabolic syndrome is a combination of risk factors T2DM and cardiovascular 

disease (O’Neill & O’Driscoll, 2015). Additionally, high HbA1c levels are also associated with 

chronic kidney disease for adults without diabetes (Kang et al., 2015). 
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HbA1c is a common measure of glycemic control, serving as an indicator of diabetes 

management (Yu et al., 2010). Elevated HbA1c levels are linked to insulin resistance (Kang et 

al., 2015). For adults with diabetes, high HbA1c levels are associated with strokes, coronary 

heart disease, and cardiovascular disease (Chen et al., 2015). Overall, high HbA1c levels are 

detrimental to health status. 

Prevalence of Type 2 Diabetes (T2DM) 

Based on numbers from the ADA and the International Diabetes Federation (IDF), 

T2DM makes up a significant portion (90-95%) of diabetes cases globally (ADA, 2014; IDF, 

2019). The estimated number of undiagnosed people with T2DM is alarming: one-third to one-

half of the population with T2DM are unaware of their condition (IDF, 2019). Certain factors 

leading to the development of T2DM include obesity, increasing age, ethnicity, and family 

history (IDF, 2019). In addition, epigenetics play a key role when looking at the nutritional 

influences on developmental periods such as the intrauterine or early childhood periods 

(Fernandez-Twinn et al., 2019). The growing prevalence of T2DM is a marker of the 

epidemiologic transition in which the major causes of death are no longer communicable 

diseases, but instead non-communicable diseases (Omran, 2005).   

Treatment Methods for Diabetes   

Pharmacologic Methods 

Type 2 diabetes is often treated with pharmacotherapy, as diet and exercise may not be 

enough to combat the progressive disease. However, there are several factors that influence 

treatment, so patients will often follow a multi-drug plan to address multiple health concerns 

(Grant et al., 2004). Table 2.2 summarizes the various oral and injectable drugs approved for 

treatment, modified from work by Kahn et. al (2014). As evident in the table, there are numerous 

medications available for people with type 2 diabetes. Insulin is a widely-known treatment, 
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though it is not initially needed for type 2 diabetes management (ADA, 2014). Other viable 

treatments in place of insulin are diet and exercise or another type of oral treatment (ADA, 

2014). However, treatment is dependent on the severity of the disease. 

This study allowed short/rapid acting metformin (biguanide antidiabetic) and Trulicity 

(GLP-1 receptor). This decision was based on the profiles of the medications, relating to their 

consistency (discussed further in Study Population in Chapter 3). Metformin enhances insulin 

sensitivity as its primary mode of action, thereby reducing hepatic gluconeogenesis and 

glycogenolysis (Rena et al., 2017; Rodbard et al., 2007). Metformin is the drug therapy of choice 

for T2DM. It is a first choice due to several reasons: its efficacy, cardiovascular and metabolic 

effects, and ability to pair with other drugs in combination therapy (Rojas & Gomes, 2013). Side 

effects of metformin are mainly of the gastrointestinal nature (Rena et al., 2017). When used in 

monotherapy, metformin adds an insignificant risk of hypoglycemia (Rena et al., 2017). The 

ADA recommends metformin first and then supplemental agents only if glycemic targets are not 

met (Inzucchi, et al., 2012). 

Trulicity is injected once a week and is recommended as an add-on for a diet and exercise 

treatment approach (Smith et al., 2016). GLP-1 receptor agonists, such as Trulicity, utilize the 

incretin system to effectively improve glycemic control (Garber, 2011). Individuals with T2DM 

lack an effective incretin system, which normally utilizes hormones to lower blood glucose 

(Nauck & Meier, 2018; Smith et al., 2016). Trulicity’s mechanism of action involves increased 

insulin secretion in response to elevated glucose, decreased glucagon secretion, delayed gastric 

emptying, and the activation of the GLP-1 receptor (Grunberger et al., 2012; Smith et al., 2016). 

GLP-1 receptors enhance insulin secretion and suppress glucagon secretion, resulting in a 
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lowered blood glucose (Druker, 2006). Side effects may include gastrointestinal discomfort, 

including nausea, vomiting, and constipation (Smith et al., 2016). 

In addition to the side effects of medications, these drugs like Trulicity have a substantial 

cost. Even though metformin is the drug of choice recommended by the ADA (Inzucchi et al., 

2012), a study found that 35% of patients were started on other drugs instead (Desai et al., 2012). 

These agents, including α-glucosidase inhibitors, thiazolidinediones, and dipeptidyl peptidase-4 

inhibitors, are significantly more expensive than metformin. In 2012, metformin was $116 for six 

(6) months, while these other drugs were $677 for the same period (Desai et al., 2012). A review 

found that high healthcare costs were consistently linked to low T2DM medication adherence 

(Krass et al., 2014). In fact, it is recognized that there is a heavy medication cost burden on those 

with diabetes resulting from policy and health insurance (Krass et al., 2014). Because of the 

significant cost of pharmacotherapy, diet is an attractive alternative for treatment, if feasible. 

Table 2.2. Approved medications for T2DM. Modified from Kahn, Cooper, Prato, 2014. 

Agent Delivery Medication Names 
Second-generation sulfonylurea 
antidiabetics 

Oral Glibenclamide (glyburide), gliclazide, 
glimepiride, glipizide 

Biguanide antidiabetics Oral Metformin 
Peroxisome proliferator-activated 
receptor γ agonists or 
thiazolidinedione antidiabetics 

Oral Pioglitazone, rosiglitazone 

α-glucosidase inhibitors Oral Acarbose, miglitol, voglibose 
Dipeptidyl peptidase-4 (DPP4) 
inhibitors 

Oral Alogliptin, linagliptin, saxagliptin, 
sitagliptin, vildagliptin 

Sodium-glucose co-transporter 2 
(SGLT2) inhibitors 

Oral Canagliflozin, dapagliflozin 

Meglitinides (glinides) Oral Nateglinide, repaglinide 
Bile-acid-binding resins Oral Colesevelam 
Dopamine-receptor agonists Oral Bromocriptine 
Islet amyloid polypeptide (amylin) 
analogues 

Injectable Pramlintide 
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Table 2.2. (continued) 
 
Agent Delivery Medication Names 
Glucagon-like peptide 1 (GLP-1) 
receptor agonists 

Injectable Exenatide (bydueron), liraglutide, 
lixisenatide, dulaglutide (trulicity) 

Rapid-acting and short-acting insulin Injectable Soluble insulin (regular insulin), insulin 
aspart, insulin glulisine, insulin lispro, 
insulin zinc-amorphous (insulin 
semilente) 

Intermediate-acting insulin Injectable Isophane insulin (NPH insulin), insulin 
zinc (insulin lente) 

Long-acting insulin Injectable Insulin zinc–crystalline (insulin 
ultralente), insulin detemir, insulin 
glargine 

 

Dietary Methods 

A lifestyle intervention approach, which includes using the diet as a tool, is a universal 

recommendation for T2DM treatment (Aryangat & Gerich, 2010). One of the main benefits of a 

diet approach is a lowered economic burden on patients with T2DM. Unhealthy diets 

significantly contribute to the development of diabetes, as shown with prospective observational 

studies and randomized controlled trials (RCTs) (Ley et al., 2014). A focus on diet has been 

favorable for glucose levels. The Diabetes Prevention Program (DPP), which implements caloric 

restriction and exercise, reduced the development of diabetes in patients with impaired glucose 

tolerance by 58% (Knowler et al., 2002). For that study evaluating impaired glucose tolerance, a 

diet and exercise approach was favorable over metformin (Knowler et al., 2002). 

Glycemic Response 

Important parameters when considering diet as a treatment are glycemic index (GI), and 

glycemic response (GR). This thesis presents a brief overview of glycemic index (GI) for a better 

understanding of glycemic effects, though the study will focus on glycemic response. 

The glycemic response (GR) describes the effects a food has on postprandial blood 

glucose. In other words, it is the change in postprandial blood glucose concentration after a meal 
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(Augustin, et al., 2015). With T2DM, it is critical to control elevated glycemic responses. The 

glycemic response is also referred to as postprandial glycemia (or postprandial glucose) 

(Jakobsen, et al., 2009). The postprandial glucose (PPG) will be discussed in the following 

section titled Postprandial Glucose (PPG).  

The glycemic index (GI) compares the ingestion of 50 g of oral glucose and a reference 

food item, using the incremental increase in the area under the postprandial glucose curves 

(O’Keefe et al., 2008). It is a GR that can be standardized for equal available carbohydrate 

(CHO) amounts (usually 50 g or 25 g), and it can also be a relative GR compared to a reference 

food item (Augustin et al., 2015). (Note that the term available CHO was first defined by 

McCance and Lawrence (1929) and refers to carbohydrates that are absorbed and digested in the 

small intestine). The GI is used as a food property that influences GR (Augustin et al., 2015; Bell 

et al., 2015) and is similar in populations with various metabolic statuses: normal glucose, 

hyperinsulinemic, and T2DM (Lan-Pidhainy & Wolever, 2011). 

High GI foods are negatively associated with cardiovascular (CV) disease and type 2 

diabetes (Beulens et al., 2007). High GI items may rapidly increase PPG and insulin demand 

(Ludwig, 2002; Willett et al., 2002). Conversely, a low GI diet could improve blood glucose 

control (Rovner et al., 2009). However, while GI may play a role in glucose, GR is more 

practical to evaluate. The GI lacks research to provide evidence-based claims (Dietary 

Guidelines Advisory Committee, 2010), which is why this study focuses on the GR. The GI 

methodology has flaws that may translate to an inaccurate use of it, including inadequate 

reference food testing and AUC calculations (Wolever, 2013). The GI can also be affected by 

various factors about foods such as processing and growing conditions, and this is still widely 

misunderstood (Wolever, 2013). 
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Pulses have glycemic lowering properties that address concerns with GI and GR. A low 

GI and GR is seen after consuming pulses (Rizkalla et al., 2002) due to the nature of their cell 

wall (Brummer et al., 2015) and starch (Singh, 2010). The cell wall is key in preventing starch 

degradation by digestive enzymes (Brummer et al., 2015). Further, digestive enzymes do not act 

as readily on pulse starches because of starch retrogradation, which makes the starches resistant 

to enzymes (Singh, 2010). Additionally, the glucose from starch is released slowly because of 

the dietary fiber and protein content in pulses. This is associated with the lower GI of pulses 

(Jenkins et al., 1983; Wolever et al., 1987). Pulses are also beneficial for overweight and obese 

adults at risk for metabolic syndrome (Mollard, Luhovyy, et al., 2012). 

Postprandial Glucose (PPG) 

Postprandial glucose (PPG) describes the glucose levels after eating (ADA, 2001). 

Estimates place the highest PPG peaks occurring within 1 hour (Esposito et al., 2008) or 1 hour 

and 15 minutes (Daenen et al., 2010) after a meal. Carbohydrate absorption and insulin and 

glucagon secretion impact PPG levels (ADA, 2001). For example, insufficient insulin levels are 

linked to elevated postprandial glucose levels since the insulin available is not enough to control 

the glucose (ADA, 2001).  

Lower PPG levels are beneficial for those with metabolic disorders, as well as healthy 

individuals (Wood, 2007). Previous findings indicate PPG is important in overall glycemic 

control, as elevated PPG values can lead to cardiovascular (CV) complications (Cavalot et al. 

2006; Fonseca, 2003; Mannucci et al., 2012). Oxidative stress induced by high PPG levels results 

in endothelial activation and dysfunction (Ceriello et al., 2004). These conditions promote the 

onset of cardiovascular disease (CVD), the leading cause of mortality for adults with T2DM 

(Ceriello et al., 2004; Roper et al., 2001). 
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High PPG is a predictor of CVD incidence, as well as of all-cause mortality (Mannucci et 

al., 2012; Takao et al., 2017). The risk for CVD mortality is more than doubled with diabetes 

(Dale et al., 2008). At a pre-diabetic postprandial level of 140 mg/dl, CV complications increase 

by 58% (Sasso, 2004). Further, a 1-mmol/L increase in mean 2-hour post-breakfast blood 

glucose leads to a 11% increase in CVD risk (Takao et al., 2017). 

Elevated PPG also has a relationship with postprandial hyperlipidemia and inflammation. 

Hyperlipidemia can magnify the effects of postprandial hyperglycemia and is associated with 

insulin resistance (Ceriello et al., 2005; Dilley et al., 2007). Glucose leads to inflammation via 

the Krebs cycle (Monnier et al., 2006). Free radicals are produced by single-electron transfer, a 

result of a surplus of the reduced form of nicotinamide adenine dinucleotide (NAD). This is 

induced by the presence of glucose and free fatty acids (O’Keefe & Bell, 2007). This relationship 

between inflammation and postprandial hyperglycemia is seen in nondiabetic and diabetic 

individuals alike (Brownlee & Hirsch, 2006). Other complications induced by hyperglycemia 

include diabetic retinopathy (Mannnucci et al., 2012). 

Considering PPG is an independent risk factor for cardiovascular complications, it is a 

better indicator than fasting plasma glucose (FPG) for glycemic control (Fonseca, 2003; Cavalot 

et al., 2006; Gerich, 2003; Mannucci et al., 2012). Several studies have found PPG two hours 

after lunch was predictive of cardiovascular complications, as well as all-cause mortality. They 

did not find a similar correlation for fasting glucose (Cavalot et al., 2011, Nakagami et al., 2006). 

Postprandial glucose also plays an important role in regulating and achieving target HbA1c 

levels, important for diabetes diagnosis and treatment (Woerle et al., 2007). 

Easily digestible foods will result in higher PPG levels compared to foods that are not 

digestible as readily (O’Keefe et al., 2008). Pulses have slowly digestible starch and resistant 
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starch (RS), which contributes to slow digestion (Jenkins, Wolever, Taylor, Barker et al., 1980; 

Jenkins et al., 1982; Brand et al., 1990; Guillon & Champ, 2002). Other factors that contribute to 

slow digestibility of pulses include proteins and the protein-starch matrix. Antinutrient factors 

also contribute to this effect on glucose levels, which includes enzyme inhibitors, phytates, 

lectins, and saponins (Thorne et al., 1983; Jenkins & Jenkins, 1995; Singh et al., 2017). 

Glycemic Response 

Relationship with Pulses  

Dietary Fiber 

Pulses are a known source of dietary fiber. Dietary fiber are carbohydrates resistant to 

digestion and absorption (Muir, 2019). While available carbohydrates are digested and absorbed, 

dietary fiber makes it past the small intestine and is either fermented in the large bowel or 

excreted as feces (Cummings & Stephen, 2007). The amount of dietary fiber will differ with 

pulse varieties (Wang et al., 2009). The two main dietary fiber classes include indigestible 

polysaccharides and oligosaccharides. Long-chain carbohydrates, such as nonstarch 

polysaccharides and resistant starch (RS), are indigestible polysaccharides. Conversely, short-

chain carbohydrates are oligosaccharides and include fructo-oligosaccharides and 

galactooligosaccharides (Muir, 2019). One of the mechanisms explaining the beneficial glycemic 

effects of fiber is viscosity, which delays absorption and thereby influences the glycemic 

response (Muir, 2019). Fiber is known to decrease a meal’s glycemic load (Raninen et al., 2011), 

which will lower the glycemic response. The dietary fiber in pulses consists of indigestible 

oligosaccharides, soluble fiber, insoluble fiber, and RS (Brummer et al., 2015). 

Soluble and insoluble fiber 

In addition to an indigestible polysaccharides or oligosaccharides classification, fiber can 

also be classified as soluble or insoluble. This classification is based on chemical properties of 
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the fiber components, in reference to water as the solvent (Raninen et al., 2011; Anderson et al., 

2009). Insoluble fibers are not fermented to the same degree in the colon due to their bulking 

action, and include wheat bran and cellulose (Anderson et al., 2009; Dikeman & Fahey, 2006). 

Soluble fibers are fermented in the colon (Anderson et al., 2009) and are further classified as 

viscous (or fermentable) or nonviscous (Chutkan et al., 2012). Soluble viscous fibers are usually 

derived from psyllium husk but also include pectin (Anderson et al., 2009; Chutkan et al., 2012), 

while inulin and wheat dextrin are examples of soluble nonviscous fibers (Chutkan et al., 2012). 

However, the classification is fluid, as fibers can have both soluble and insoluble properties 

(Chutkan et al., 2012). 

Soluble viscous fiber reduces the glycemic response (Wood, 2007). Foundational work 

from Jenkins and colleagues (1978) found that gastric emptying and glucose absorption is 

delayed by viscous fibers. Throughout the years, various studies have shown that barley and oat 

soluble fiber lower the glycemic responses in healthy adults (Granfeldt et al., 2008; Hlebowicz et 

al., 2008; Kim et al., 2009). More evidence is established on the effects of soluble fiber on 

glycemic control, but this does not rule out the benefits of insoluble fiber. Weickert and 

colleagues (2006) found that insoluble cereal fiber could improve insulin sensitivity in 

overweight and obese women. 

Positive glycemic effects are not limited to cereal grains. The soluble fibers of pulses 

have demonstrated protective effects against metabolic syndrome and T2DM (Babio et al., 2009; 

Steemburgo et al., 2009; Villegas et al., 2008). The cell wall polysaccharides of pulses contain 

large amounts of pectin (soluble viscous fiber) and proteins (Vogel, 2008). The pectin, along 

with protein and phenolic compounds, are linked to the disruption of the cell wall structure and 

release of bioactive compounds (Awika et al., 2018). In addition, pulses have fewer phenolate 
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ester cross-linkages than cereal crops. This, along with the presence of pectin, is likely to affect 

the fermentation of dietary fiber (Awika et al., 2018). This is of importance as the carbohydrates 

in pulses are normally rapidly fermented and used by colon bacteria (Henningsson et al., 2001). 

In pulses, the quick fermenting fiber results in a quick release of phenolics (Awika et al., 

2018). The importance of these phenolic compounds for glucose metabolism will be discussed in 

the Phenolic acid section. The effects of phenolic acid, along with the cell wall integrity, 

influence the glycemic response. 

While pectin is a soluble fiber, the majority of dietary fiber in whole pulses is insoluble 

fiber (Hall et al., 2017; Tosh & Yada, 2010). The hulls contain more insoluble fiber (Singh et al., 

2017; Frohlich et al., 2014), while the cotyledons have higher soluble fiber, along with 

oligosaccharides, SDS and RS (Singh et al., 2017). Pea fiber consists of 63-92% insoluble fiber 

(Martín-Cabrejas et al., 2003; de Almeida Costa et al., 2006). 

Starch 

Starch is a substantial carbohydrate in pulses, making up anywhere from 22% to 45% of 

pulses (dry weight) (Hoover et al., 2010). Three types of starch will be presented: slowly 

digestible starch (SDS), rapidly digestible starch (RDS), and resistant starch (RS). Englyst and 

colleagues (1992) measured the time periods for the glucose release corresponding to these types 

of starch. They defined RDS as the amount of glucose released after 20 minutes, SDS was 

between 20 and 180 minutes hydrolysis, and RS as the total starch minus amount of glucose 

within 180 minutes hydrolysis (Englyst et al., 1992). In other words, RS is the amount of starch 

undigested after 180 minutes (Chung et al., 2009).  

While starch is likely important for glycemic control, the mechanism probably lies with 

digestive enzyme accessibility and not the structural features of starches (Xiong et al., 2018). 

Xiong and others (2018) found structural features such as crystallinity, melting temperatures and 
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enthalpy change had no correlation to starch digestion kinetics. They found digestion was instead 

mediated by enzyme accessibility for whole pinto beans, garbanzo beans, green-split peas, and 

black-eyed peas. The authors proposed physical structures of the cell walls and/or pulse protein 

matrix modulate starch digestion, by way of enzyme accessibility. This was shown with the 

discovery of dextran, an enzymatic reaction by-product, in the cellular protein matrix (Xiong et 

al., 2018). 

Slowly digestible starch (SDS) and Rapidly digestible starch (RDS) 

The starch in pulses may contribute to their low GI nature, as they are slowly digestible 

(Rizkalla et al., 2002). The low in vitro starch digestibility value (ISDV) and SDS content of 

pulses make them ideal for individuals with T2DM (Chung, Shin, et al., 2008; Lehmann & 

Robin, 2007; Madhusudhan & Tharanathan, 1996, McCrory et al., 2010). The low ISDV is 

attributed to higher amylose content (Madhusudhan & Tharanathan, 1996, McCrory et al., 2010).  

Whereas SDS results in a slow increase of PPG over time, RDS has the opposite effect on 

blood glucose. Fast and high peaks are seen with RDS (Lehmann & Robin, 2007), and this 

fraction is responsible for the sudden blood glucose peaks after eating a food (Chung et al., 

2009). Certain processes, such as autoclaving, may convert RDS into RS (Kasote et al., 2014). 

However, one of the major findings from that in vitro starch digestibility study was that both RS 

and RDS are converted to SDS with autoclaving (Kasote et al., 2014).  

In a study looking at peas, lentils and chickpeas, lentils had the higher SDS and lower 

RDS content of the three (Chung, Liu, et al., 2008). In another study looking at corn, peas and 

lentils, some of those authors found peas had more RDS than lentils. That study also found 

lentils had more SDS than peas, and peas had more RS than lentils (Chung et al., 2009). SDS and 

RS are linked to beneficial glycemic effects. 
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Resistant starch (RS) 

Resistant starch, an indigestible polysaccharide, has four categories: RS1, RS2, RS3, and 

RS4 (Yadav et al., 2010). RS1 includes physically entrapped starch, RS2 describes ungelatinized 

starch, RS3 is retrograded starch, and RS4 is chemically modified starch (Yadav et al., 2010). 

For this study, RS1 and RS2 are likely to be the RS forms of interest due to the structural 

implications on digestive enzyme accessibility. Physically entrapped starch of RS1 will affect the 

role amylotic enzymes play in digestion, and the structure of RS2 makes this form unavailable to 

the enzymes (Yadav et al., 2010). 

Pulses have higher resistant starch values than cereal and tuber crops (Yadav et al., 

2010). This may be explained three-fold: starch enveloped in intact tissue/cell structures, high 

amylose content, and a large amount of viscous soluble fiber (Yadav et al., 2010). In particular, 

the cell wall has a protective effect for RS, and is the likely mechanism behind high levels 

(Brummer et al., 2015). The resistant starch found in all pulses limits the accessibility of α -

glucosidase enzymes and will likely result in a lower PPG response (Dhital et al., 2016; McCrory 

et al., 2010). A-glucosidases cannot act on this fraction of starch, and it remains undigested until 

it reaches the colon (McCrory et al., 2010). This enzyme does not readily digest resistant starch 

due to its starch-protein matrix (McCrory et al., 2010). 

In a sample of eight different pulses, including the four main types of pulses (beans, peas, 

lentils, and chickpeas), green lentils had the lowest resistant starch content (Brummer et al., 

2015). When paired with rice powder, pulse powders made of lentil, pigeon pea, mung bean, or 

chickpea increased the RS of the rice-pulse mixture (Kumar et al., 2018). 

Resistant starch is affected by processing such as boiling, and this effect will be discussed 

in the Pulse Processing section. Other processes, like retrogradation reduce RS content through 

the conversion into RDS (Chung, Shin, et al., 2008).  
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Phenolic acid 

When looking at green peas (Pisum sativum) and green lentils (Lens culinaris), they have 

some distinguishing characteristics. Of all the pulses, peas have the most phenolic acid (Hall et 

al., 2017). Phenolic acid plays a significant role in glucose metabolism. These polyphenols 

inhibit α -glucosidase and α -amylase, enzymes that digest dietary carbohydrates to glucose (Lin 

et al., 2016). Phenolic acid is likened to the action of metformin, by stimulating glucose uptake 

(Prabhakar et al., 2009). A mode of action may be glucose transporter interference, resulting in a 

reduction in enterocyte glucose absorption (McCrory et al., 2010). 

Studies Using Pulses 

This section on glycemic response studies using pulses is divided in the following six 

ways: studies using only pulses that were whole (not part of a meal), studies looking at pulses as 

a part of a meal, studies using both whole and flour, and studies looking at pulses only in flour 

form. The section ends with a discussion on glycemic response work on T2DM, and a summary 

of the glycemic response studies presented. 

Whole pulses only 

Jenkins and colleagues were pioneers for glycemic response studies using pulses. In 

1980, they reported lentils and soya beans (also known as soy beans) raised blood glucose by 

30% of the responses seen from wholemeal bread (Jenkins, Wolever, Taylor, Ghafari et al., 

1980). All the treatments had equal amount of carbohydrates (50 g), and the subjects had normal 

glucose or diabetes (type unspecified). All meals were served with skinned tomatoes for 

palatability. The authors speculated that these effects were due to the rate of digestion attributed 

to foods. Later, some of those same authors also hypothesized that the low glycemic response 

was not because of increased insulin secretion, and thus were due to the properties of the foods 

(Jenkins, Wolever, Taylor, Barker, et al., 1980).  
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That same year, Jenkins and colleagues also reported on the glycemic response of whole 

pulses compared to other carbohydrate containing foods, such as pasta, breakfast cereal, and 

grains (Jenkins, Wolever, Taylor, Barker, et al., 1980). In this study, thirty-five (35) foods were 

tested in a group of 25 subjects (15 men, 10 women), with eleven of those meals being a legume. 

The eight legumes classified as a dry legume meal (and were boiled) were butter beans, haricot 

beans, kidney beans, soy beans, black-eyed peas, chickpeas, marrowfat peas (also known as 

green mature peas), and lentils. There were three additional legume meals: fresh frozen peas, 

baked haricot beans, and canned soy beans. The legumes, along with some of the other meals, 

were served with skinned tomato for palatability.  

Key findings from this study were that all the eight dried legumes produced lower mean 

blood glucose responses, lower mean peak rises in glucose concentration, and a lower 

incremental area under the glucose curve (iAUC) than all the other foods (Jenkins, Wolever, 

Taylor, Barker, et al., 1980). The authors noticed that the effects were similar among all the 

legumes, with two exceptions: the green peas elicited a high response and soy beans elicited a 

low response. In the context of pulses, soy beans are not included in this group. It is still 

noteworthy that all the legumes produced lower PPG values than the other treatments. It is also 

noteworthy that the green peas produced the highest PPG of the other pulses (regardless of 

including or excluding the soy beans). With the three additional legume meals (fresh frozen pea, 

canned baked beans, and canned soy beans), the authors observed a few things as well. The fresh 

frozen peas produced a similar PPG response as the dried peas, but was not statistically similar to 

the other dried legumes. Although similar, the authors theorized there would be differences in the 

peas’ carbohydrates, expecting more starch and less sugar in the marrowfat peas because of its 

maturity. The baked beans elicited a higher glycemic response than the dried haricot beans. They 
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also observed that the canned soy beans did not differ from the plain dried soy beans. These 

observations have implications on the effects pulse processing has on the glycemic response, 

which has later been explored over the years. Finally, the authors recognized that fiber content 

and type of starch would have an impact on the glycemic response. 

As part of a meal 

Winham, Hutchins, and Melde (2007) found that incorporation of pulses into high GI 

meals did not have any significant effects on the GR. This randomized study was the first to look 

at GR of pulses as a part of a meal. The authors used pinto beans, black-eyed peas, and navy 

beans in the form of a spread with a bagel (a high-glycemic index item). A placebo was used as 

the control spread. The spreads were prepared with a food processor. Twelve healthy, insulin-

sensitive adults completed this study (aged 20 to 65). The serving sizes were a low-dose (1/2 

cup) and a high dose (1 cup). Their findings were that there was a significant effect based on 

time for both dosages, but not when looking at a time x treatment interaction. They also did not 

find a significant difference between a low-dose or a high-dose of pulses. This suggests pulses 

have beneficial glycemic effects in any quantity past ½ cup. They theorized that processing the 

pulses into a spread damaged the cell wall and may have impacted the GR of the pulse 

treatments paired with a high-GI item (i.e., bagel). This theory is a relevant research question, as 

many publications have now looked at the effects of pulse processing on the glycemic response. 

The authors further noted that the rapid digestion of the pulse spreads resulted in an absence of 

significant net glucose changes, which would not be seen with whole pulses. 

Another study also explored this concept of blending pulses. Researchers from Purdue 

University looked at meals with either whole or blended lentils (Anguah et al., 2014). Twelve 

healthy men and women aged 18 to 55 completed six test days. The serving size for the lentil 

meals were approximately ½ cup and were served in a burrito. The control was a burrito without 
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lentils, and there were two additional treatments consisting of an enzyme supplement and a 

placebo capsule. Comparing the whole lentil and blended lentil meals, the blended lentils did not 

significantly increase the PPG levels more than the whole lentil meal. The study emphasized that 

the meals were nutritionally identical, so differences are likely due to the physical form of the 

pulses. The authors highlighted either as blended or whole may be ways to increase pulse 

consumption, but that this should be explored with other pulses before applying this observation 

across all pulse types. Additionally, these findings were both in agreement and in contrast with 

other previous work on the physical form of lentils (O’Dea & Wong, 1983; Jenkins et al., 1982). 

This shows the variability in glycemic response studies.  

While Winham and colleagues (2007) did not find significant differences when the pulses 

were paired with a bagel in normoglycemic individuals, findings from 2017 by Winham and 

colleagues contrast this. Winham, Hutchins, and Thompson (2017) found that the GR improved 

when pulses were paired with another high GI food, rice. The 3x3 randomized cross-over study 

evaluated the GR of plain white rice, black beans with rice, and chickpea with rice meals. The 

meals were matched for 50 g available carbohydrates. Nine healthy women aged 18 to 65 

completed the study. The rice-only and chickpea and rice meals were significantly different (P = 

0.047), while the rice-only and black bean and rice meals had a trending difference. The authors 

also noted an extended effect on glucose levels from the black bean and rice meal compared to 

the other meals. The black bean and rice meal had a lower GR at 120 minutes postprandial, while 

the chickpea and rice meal had a positive effect only until 90 minutes. They hypothesized that 

the higher fiber and protein content of the black beans and rice meal translated to this observed 

effect. 
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Pulses have also been used in combination with pasta and tomato sauce. Mollard, Zykus, 

and others (2012) used pulse treatments (pulse, pasta, and tomato sauce) with 44% of the energy 

coming from the pulses. This translates to two cups or about 44.5 g of available carbohydrate. 

Pulses used were chickpeas, lentils, navy beans, and yellow peas. The control treatment was 

pasta and tomato sauce alone. Twenty-four healthy males aged 20 to 30 completed the study. 

The authors assessed the treatment effects at all the postprandial time points (total of 260 

minutes) and several observations come from this. All pulse treatments had significantly lower 

PPG values than the control until 40 minutes postprandial. At 20 minutes, the navy beans elicited 

lower PPG values than the chickpeas. Then at the 60-minute time point, the lentils and navy 

beans were lower than the yellow peas. The navy beans continued to be lower than the yellow 

peas at 80 minutes. Additionally, at 80 minutes, the chickpeas and lentil treatments were lower 

than the yellow peas and control. Then at 110 minutes, the navy beans show a lower PPG than 

the control. Statistical significance from post hoc tests was not found at 140 minutes. Further out 

at 200 minutes, lentils and navy beans were lower than the control treatment. Finally, at 260 

minutes, the only significance was seen with the navy beans. This treatment was lower than the 

chickpeas and the control treatment. This study noted that the yellow peas were distinctive from 

the other pulses with its high available CHO and low fiber content, which may explain why it 

was not significantly different from the control treatment between 60 and 260 minutes. A 

conclusion from this study was that pulses were able to provide glucose lowering properties even 

with the high carbohydrate meal (pasta) but these effects are dependent on pulse type. 

Whole and pulse flours 

Ramdath and colleagues (2018) investigated the PPG response of products or meals 

containing various forms of lentils, including boiled whole lentils, boiled lentil puree, roasted 

lentil flour and cooked spray-dried lentil flour. Adults aged 18 to 75 with healthy fasting glucose 
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levels were recruited for three different studies within the publication (n = 10 for each study). 

The amount of available carbohydrate for the meals in their first study was 50 g. The lentil-

containing treatments for this study were compared to instant potato flakes and white bread. 

Tomato juice and oregano were added to the meals for palatability. The flour meals had higher 

incremental area under the curve (AUC) and relative glycemic response (RGR) values than the 

boiled cooked lentil meal. The authors found significant (p < 0.05) differences between the 

lentil-containing products and the instant potato flakes. They concluded that boiled whole lentils 

and boiled lentil puree were very similar in their glycemic properties, and that the spray-dried 

lentil flour elicited the highest glycemic response compared to all the other lentil treatments. 

Further, they hypothesized that the effects of spray-dried lentil flour were explained by resistant 

starch content, lower total dietary fiber, and smaller particle sizes. 

Anderson and colleagues (2014) looked at various forms of lentils and their effects on the 

GR of healthy males aged 18 to 30 (n = 12). Whole canned green lentils, pureed canned green 

lentils, pre-cooked lentil powder, and whole wheat flour were used as treatments in this repeated-

measures study. The meals were prepared with tomato sauce. The authors found that the PPG 

was not significantly affected by treatment, but they did find a significant main effect of time (P 

< 0.0001). They reflected that their findings differed from previous work and could be explained 

by differences in processing, such as drying time. 

Pulse flours only 

Fujiwara and colleagues (2017) used split yellow pea, split green pea, split green lentil, 

and split red flours (as well as other fractions such as pea fiber) in an in vivo and in vitro GI 

study. The pulse ingredients were incorporated into a variety of products, including pastas, 

breads, and muffins. Control products contained 100% wheat flour, while the pulse comparison 

contained up to 50% pulse flour. Protein content was similar among the flours, except for the 
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split yellow pea flour. Total starch was lowest for the split green pea flour, with the split green 

lentil flour at an intermediate level. The higher starch content of the lentil flour was in line with 

2017 U.S. Pulse Quality Survey (NPGA, 2018). Nevertheless, all the pulse products saw reduced 

total starch content. The resistant starch was higher in the pulse products than the control, except 

for the granola bars. Ten healthy subjects (5 male, 5 female) aged 36 ± 14 years completed this 

study. Participants consumed five control and five pulse test meals. Some reduction in 

postprandial glucose peaks were found with pulse variants, though the power of the study did not 

provide statistical significance for GI or iAUC. Glycemic index reductions were found with the 

pulse-added products. The authors concluded that pulse ingredients led to positive reductions in 

GI. They reported a variation in results dependent on products and processing methods, with a 

recommendation to investigate pulse flours and processing further. 

Kumar and colleagues (2018) investigated the glycemic response of rice powder paired 

with 0.05 g pulse powder. The study determined the glycemic response by GI in vitro methods, 

resistant starch estimations, and amylose content determination. Four types of pulses were made 

into pulse powder and mixed with the rice powder: pigeon pea, lentil, mung bean, and chickpea. 

The mung beans had the largest effect on the GI compared to rice-only samples, with the lentils 

and chickpeas having a lower effect. These results highlight the differences in glycemic 

properties by pulse type. 

T2DM 

Jenkins and others (1983) looked at the glycemic response of fifteen meals, including five 

pulses. The pulses tested were chickpeas, kidney beans, red lentils, romano beans, and black-

eyed peas. The twelve adults (six men, six women) with diabetes of a mean age of 67 years 

participated in the study, in groups of five to seven. There were 19 sessions over the course of 5 

months, and the average completion was 15 sessions. Diabetes type was not confirmed, but the 
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authors speculate that eleven individuals had T2DM, and the remaining one person had type 1 

diabetes. The study’s goal was to determine if there were differences between the foods, and if 

any of these differences could be attributed to food constituents such as fiber, sugar, or protein. 

When comparing values for foods consumed among the same groups of individuals, the mean 

glucose values, overall mean blood glucose peak rise, and AUCs for the pulses were lower than 

the other foods. Among the pulses, the kidney beans, chickpeas and lentils had lower PPG 

responses. Interestingly, spaghetti and rice meals did not differ significantly for AUCs and peak 

rises from the beans. The researchers discussed the possibility of food form and particle size 

playing a role in glycemic control, especially when considering the white bread and spaghetti. 

For the pulses, Jenkins et al. (1983) pointed out that several factors may be responsible for the 

beneficial glycemic profile of whole beans, including enzyme inhibitors, lectins, and phytates. 

The effects of carbohydrate type and processing on in vitro digestion were also presented as 

another factor. Finally, the authors compared the glycemic responses of their participants to a 

previous study looking at adults with normal glucose (Jenkin, Wolever, Taylor, Barker, et al., 

1980), and they found similar patterns between the two populations. 

Bornet and colleagues (1987) looked at six starch-rich foods consumed alone and part of 

mixed meals in adults with T2DM. Eighteen adults (12 men, 6 women) tested three of the meals 

containing either white bread, spaghetti, white rice, instant flaked potatoes, dried kidney beans, 

or dried lentils. The food items were tested three times. The GI for the lentils and beans were 

lowest compared to the other foods, with the kidney beans having the lowest GI. There were 

significant differences between potato GI and that of lentils (P < 0.01) and kidney beans (P < 

0.01), and between the rice and kidney beans (P < 0.05). These results suggest that there are 
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differences with pulse type, with the kidney beans having better glycemic lowering responses 

than the lentils. 

Schäfer and others (2003) looked at dried yellow peas and potatoes in adults with T2DM, 

who managed their diabetes with diet and not medications. Nine adults (6 men, 3 women, aged 

48 to 75) completed the 3x3 crossover study. The three meals contained carrots, celery, and a 

meat and were meant to mimic a “normal mixed meal.” The meals were classified based on the 

carbohydrate source: only peas, peas (2/3 of carbohydrate source) and potatoes (1/3 of 

carbohydrate source), and only potatoes. The study found that the glycemic responses of the 

dried peas was a 1/3 of potatoes. However, the authors found that the combination of potatoes 

and peas did not present a significant effect on the digestion of the potato starch. One of the 

purposes of the study was to determine the place dried peas have in carbohydrate counting. A 

conclusion addressing that research questions was that 2/3 of the carbohydrate content for dried 

peas should be disregarded to avoid hypoglycemia or PPG values higher than expected, in the 

context of mixed meals. 

Thompson, Winham, and Hutchins (2012) looked at pulses as part of a meal in adults 

with T2DM. Pinto beans, black beans, or red kidney beans were served with white long grain 

rice. Seventeen men and women with type 2 diabetes consumed these test meals, along with a 

control of rice only. All of the test meals gave 50 grams of available CHO. This study found that 

the mixed meal (high and low GI) produced intermediate responses, as expected from previous 

literature. Additionally, key findings were that the three market classes (pinto, black, red kidney) 

produced different glycemic responses compared to each other. Specifically, the authors found 

that although black beans had a lower fiber content, this meal still produced a lower glycemic 

response than the red kidney treatment. These authors also hypothesized that differences among 
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the pulses are likely due to variations in fiber fractions, as previous work shows carbohydrate 

content and GI is important with mixed meals (Wolever et al., 2006). In the discussion, 

Thompson et al. (2012) referenced previous work on fiber in kidney beans to offer explanations 

for PPG differences. The levels of indigestible starch may differ among the pulses, with red 

kidney beans having less than pinto and black beans (Ospina, 2000). This would have resulted in 

a faster digestion process for the kidney beans. Additionally, data from in vitro animal studies 

showed differences in soluble fiber and RS between red kidney and black beans. The red kidney 

beans contained lower amounts of soluble fiber and RS, which would have resulted in a slower 

digestion and lower PPG (Bednar et al., 2001). 

Summary and Research Gaps 

There are a few common observations in much of the existing literature on pulses and the 

glycemic response. Many of the studies reached a similar conclusion: pulses elicit varying 

glycemic responses dependent on pulse type. This study explores two pulse types for this reason. 

Additionally, digestion is a key mechanism that comes up in many of these studies, and is 

proposed as having a large influence on the glycemic response. The food properties and their 

interactions with digestion is recognized as an important factor in resulting glycemic responses. 

A consensus is that these properties vary from food to food, though exactly how is still debated. 

Another theme is differences that are not related to nutrient content. In studies where the 

meals are nutritionally equivalent (based on basic nutrient analysis reporting carbohydrates, 

protein, fat, etc.), it is clear that differences in PPG values are due to other factors. For instance, 

processing, pulse type, fiber content, and starch are likely to influence PPG. 

A few research gaps exist: flours with hulls retained, serving portions, information on 

adults with T2DM, and inconclusive results. First, in studies using pulse flours, dehulled (or 

split) flours are often used as pulse test meals. Dehulling (discussed in more detail in the 
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Dehulling section) is a conventional practice for pulse flour processing, but it results in a loss in 

fiber. The loss of fiber makes comparisons between whole pulses and pulse flours more difficult, 

as they will no longer be as nutritionally equal as possible. The difference in nutrient content 

adds another factor that may influence results. Additionally, dehulling has other effects that can 

negatively impact glycemic control, such as the reduction of phenolics (discussed in more detail 

in Dehulling section). Although it is important to know how commercial products behave, it is 

important to understand how the principle behind pulse flour processing (i.e., grinding), and not 

the reduction of fiber, and that might influence the glycemic response. 

Secondly, serving portions are not always matched for available CHO in existing 

literature. There may be large variability in available CHO even within a single study. It is 

important for test meals to be similar in available CHO otherwise the focus becomes on 

nutritional differences. 

There is substantially more work on adults with normal glucose than those with T2DM. 

However, the benefits of glycemic control are more significant in adults with poor glycemic 

control, rather than those with a normal metabolism (Livesey et al., 2008). The size of the effect 

of low GI diets is more impactful for people with type 1 or 2 diabetes. In a systematic review and 

meta-analysis, Livesey and colleagues (2008) found that increasing the amount of unavailable 

carbohydrates improved blood glucose more for people with poor glycemic control. Compared to 

research on adults with normal glucose, the population with T2DM is underrepresented. The 

literature also showcases the large variability in findings. Results are not always consistent with 

previous findings. These differences could be due to processing parameters, study design, or 

several other reasons. This variability demonstrates an expansive area of research yet to be 

investigated and/or the need to continue investigating. In order to one day reach a consensus, 
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whether it be regarding pulse type, digestion, processing, or other factors, there is a need for 

more scientifically sound studies on the glycemic response.  

Pulse Processing 

Whole pulses do not hold a lot of appeal in the context of the American diet.  However, 

processing is a tool to promote the food group and increase consumption. An avenue to 

implement pulses in the American diet is through pulse flours or fractions, which is currently 

uncommon, especially for pea and lentil flour (Tiwari et al., 2011; USA Dry Pea and Lentil 

Council, 2010). In favor of peas and lentils, these pulses do not require as long of a cooking time 

as beans, and this is likely to appeal to pulse processors. Implementation can occur across several 

food groups: meat, snacks, baked goods, and cereals. 

Notable functional properties include solubility, emulsifying, gelation, foaming, water-

binding capacity, and mechanical shearing and heat stability (Foschia et al., 2017; Ettoumi & 

Chibane, 2015; Singh, 2017). The starch content of pulses make them acceptable ingredients for 

extrusion processing because the starch allows expansion, which is proportional to starch content 

(Frohlich et al., 2014, Linko & Linko, 1981). These vast properties of pulses make them an 

adaptable ingredient with several product development applications. 

Food processing has effects on several functional properties of raw ingredients.  The 

pulses in the present study were soaked, heated and then milled to a pulse flour, which are all 

forms of processing.  This discussion will be limited to the impact of processing on digestion, as 

it potentially influences the GR. 

Processing influences digestive enzyme accessibility, further influencing the digestion 

rate and extent. The disruption of native macrostructures increases starch digestion rate and 

extent as digestive enzymes have better access to the starches (Tappy et al., 1986; Würsch et al., 
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1986). Further, the total starch content is affected by cooking: Brummer and colleagues (2015) 

found that cooked peas and lentils had lower total starch content than their raw forms. 

Processing also affects antinutritional factors, such as lectins (Singh et al., 2017). Recall 

that lectins may have a positive association with glucose levels. Further, cooking and processing 

destroys amylase inhibitors, which normally reduce carbohydrate digestion through the 

inhibition of pancreatic amylase (McCrory et al., 2010). Thus, the presence of α-amylase 

inhibitors is important for blood sugar control. 

Naturally, pulses have a subsequent meal effect, in which consumption during a meal will 

affect the glucose values for later meals (Higgins, 2011). Processing, cooking, and milling may 

remove this effect or produce higher PPG values than expected (Higgins, 2011). Processing or 

cooking, such as canning, may also affect the GI of pulses (Wolever et al., 1987; Atkinson et al., 

2008).  

Effect on Resistant Starch 

Since resistant starch may play a large role in glycemic control, the discussion on 

processing impacts will be limited to this factor. Certain processing may convert other forms of 

starch into RS. Kasote and colleagues (2014) found that autoclaving converted RDS into RS. 

However, they also found that autoclaving could also convert RS to SDS (Kasote et al., 2014). 

This study also observed that various forms of processing, such as cooking, splitting, soaking, 

and boiling, generally reduce resistant starch content of lentils and green peas (Kasote et al., 

2014). This is due to a conversion into digestible starch induced by thermal processing, as well 

as enzymatic action (Pujolà et al., 2007). As mentioned earlier, resistant starch has positive 

effects on the GR via digestive enzyme accessibility (Dhital et al., 2016; McCrory et al., 2010) 

and thus, a higher glycemic response is expected with less resistant starch present. However, 

another study looking at cooked lentils reported an increase in resistant starch (Wang et al., 
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2009). In this study, total starch, IDF and TDF were also increased (Wang et al., 2009). Other 

studies looking at various beans (pinto, black beans, and chickpeas) also saw increased resistant 

starch content after boiling (Kutoš et al., 2003; Fabbri et al., 2016).  

The catabolism of amylose inhibitors during boiling may explain decreases in resistant 

starch, while retrogradation of starch may explain an increase (Wang et al., 2010). Cooling 

allows for further retrogradation, and cooked pulses are likely to have an increase in resistant 

starch compared to fresh cooked pulses (Fabbri et al., 2016). The term fresh cooked pulses for 

that study refers to whole pulses that were dry and rehydrated by boiling, and were compared to 

pulses that were cooled for longer. In the study by Fabbri and colleagues (2016), pulses that were 

processed (canned as whole pulses or refried) were also higher in resistant starch than fresh 

cooked pulses. It is recognized that thermal processing effects on dietary fiber are dependent on 

several factors: pulse type, processing methods, duration, and analytical methods (Fabbri et al., 

2016; Kutoš et al., 2003; Pujolà et al., 2007). 

Pulse Flours 

Pulse flour currently lacks a universal definition in comparison to the well-known wheat 

flour. The Food and Drug Administration defines wheat flours as powders in which 98% or more 

of it passes through 212 µm or less cloths (Food and Drug Administration [FDA], 2018). Many 

pulse flours used in academia would not meet this wheat flour classification (Thakur et al., 

2019). In many cases, particle size for pulse flours is poorly defined (Thakur et al., 2019). 

Several milling studies describe pulse flour as pulse seeds that have been ground, with an 

openness to the degree of coarseness or fineness achieved (Thakur et al., 2019). This study 

follows that definition. 

Brummer and colleagues (2015) compared whole pulses to ground raw pulse flours and 

saw differences related to starch. The grinding of the flours resulted in the cell walls opening and 
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a release of starch granules. Some of the starch granules remained stuck to cell wall fragments. 

When they cooked the flour with water, the presence of whole starch granules was minimal 

(Brummer et al., 2015). 

With respective to the influence of the cotyledon cell structure on starch hydrolysis, Berg 

and colleagues (2012) used three different processing conditions on navy beans. The processing 

conditions were cooked whole then milled, milled then cooked, and cooked beans milled under 

extreme conditions. The levels of starch hydrolysis were 60%, 80 to 90%, and 70 to 80%, 

respectively. The second processing method served to disrupt the cell walls prior to cooking, 

while the third process served to intensely break the cell walls after cooking (Berg et al., 2012). 

This study showed that the highest starch hydrolysis occurred with the pulses that were first 

milled and then cooked. Cooking refers to boiling in this study. The authors concluded that even 

after boiling, the cell wall of whole pulses maintained their integrity and prevented starch 

degradation (Berg et al., 2012).   

Pulse flours are conventionally made from dehulled seeds, which are lower in fiber 

compared to seeds with hulls (also called the seed coat) but are still sources of protein and starch. 

Flours made like this are called split flours. However, the incorporation of the seed coat is 

recommended as it would result in higher fiber, iron and calcium (Frohlich et al., 2014). 

Fractions from milled lentil flour are high in protein, which may be due to a lower initial seed 

hardness of lentils (Pelgrom et al., 2015). Large decreases in starch content were also seen in 

lentil flours that were soaked in water and then dried (Vidal-Valverde et al., 2002). Further, 

moisture content impacts pulse millability, with a lower moisture content resulting in an increase 

in flour yield, as well as a smaller particle size (Sakhare et al., 2014; Pelgrom et al., 2015). 
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Dehulling 

Dehulling, a common practice in pulse processing, removes the outer seed coat (also 

known as the hull) from the cotyledons of the pulses (Patterson et al., 2017; Vishwakarma et al., 

2018; Wood & Malcolmson, 2011). Pulses are soaked prior to dehulling, after the exterior matrix 

is softened from soaking (Thakur et al., 2019). Factors that influence dehulling include seed 

variety, size, shape, moisture content, and seed hardness (Viskwakarma et al., 2018). 

Peas and lentils are some of the easiest pulses to dehull (Singh, 1995). Dehulling 

proportionally increases protein and starch content since the seed coat has little and is removed 

(Wang et al., 2008; Wang et al., 2009). However, it will result in a decrease in insoluble dietary 

fiber, as this is present in the seed coat (Wang et al., 2008; Hall et al., 2017).  

The soluble dietary fiber content is also lower in dehulled seeds compared to whole, raw 

seeds (Wang et al., 2008). In lentils, dehulled seeds are lower in trypsin inhibitor activity, tannin, 

soluble dietary fiber, insoluble dietary fiber, total dietary fiber, and iron (Wang et al., 2008). 

Dehulled lentils have as high as 41% and 50% reductions in soluble and insoluble fiber, 

respectively (Wang et al., 2009). Dehulled peas can have as high as 27% and 46% reductions in 

soluble and insoluble fiber, respectively (Wang et al., 2008). When looking at pulse flours, 

dehulling typically results in a flour with an increased protein and starch content and a decreased 

insoluble and soluble fiber content (Vaz Patto et al., 2015; Wu & Nichols, 2005). 

Dehulling also reduces phenolics, which inhibit α-glucosidase and α-amylase. Recall 

these are the enzymes that digest dietary carbohydrates to glucose (Lin et al., 2016). Therefore, a 

reduction of phenolics would lead to more carbohydrate digestion and an increased release of 

glucose into the blood. A 25-30% and 10-50% reduction in total phenolic content was reported 

for lentils and peas, respectively (Vidal-Valverde et al., 1994; Bishnoi et. al, 1994; Alonso et al., 
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1998; Han & Baik, 2008). In the case of α-amylase inhibitors, an increase was reported in lentils 

after dehulling (Shekib et al., 1988; Alonso et al., 2000). 

Milling 

Milling is a combination of dehulling, splitting and flour milling (Wood & Malcolmson, 

2011). Dehulling removes the seed coat, then splitting cleaves, and flour milling (or grinding) 

produces the final flour product (Wood & Malcomson, 2011). The outcomes of milling are size 

reduction, component separation, and stress-induced changes to physiochemical properties 

(Thakur et al., 2019). Flour particle size and functionality are interconnected, as size reduction 

enables food applications such as blending (Frohlich et al., 2014; Thakur et al., 2019). 

Physicochemical changes may occur with starch, protein, and fiber as a result of milling. 

Studies have confirmed that roller milling results in high starch damage, considering it alone 

(Sakhare et al., 2014) and compared to other milling methods (Maskus et al., 2016). Particle size 

and degree of shearing have a profound impact on the starch damage caused by roller milling 

(Scanlon & Dexter, 1986). Particle size also has an impact on protein, with a study finding an 

increase in soluble protein with finer flour (Kerr et al., 2001). Differences in dietary fiber 

components like hydration and porosity (Dogan et al., 2018) also exist between coarsely milled 

and finely milled flours (Daubenmire et al.,1993; Dogan et al., 2018). 

Milling also impacts the cell wall, which influences starch hydrolysis and glucose release 

rates. Starch hydrolysis was compared in the cells of intact and mechanically damaged pulse 

seeds (Dhital et al., 2016). The digestive enzymes were found outside of intact cells and inside 

the broken cells. The broken cells had a faster starch digestion as the enzymes had better access 

to the starch. Pulse flour was proposed as having a faster digestion than cooked whole legumes, 

due to the differences in the cell wall (Dhital et al., 2016). Processing whole pulses into smaller 

particle sizes (i.e., flours) also results in faster glucose release rates (Luhovyy et al., 2017). A 
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gradual release of glucose results in a lower postprandial glycemic response, as opposed to 

rapidly digested and absorbed carbohydrates (Jenkins et al., 1981; O’Keefe et al., 2008). 

Roller Milling 

This study’s pea and lentil flours were produced with two types of milling, one being a 

roller mill. Roller milling is an automated milling method that may be used for the production of 

pulse flours (Tiwari et al., 2011). This technology was introduced in the 1870s (Thakur et al., 

2019). It breaks up particles through compressive stress, shear, and friction (Scanlon & Dexter, 

1986). This mill is set up with a set of two rollers and simultaneously completes the grinding and 

screening steps (Tiwari et al., 2011). The first crushes the seed and removes the seed coat, and 

the second uses screens to pass desired particle sizes through (Tiwari et al., 2011).  

Roller milling has been shown to reduce total dietary fiber (TDF) and insoluble dietary 

fiber (IDF) in lentils and peas from their raw seeds to their flours (Dalgetty & Baik, 2003). 

Meanwhile, the soluble dietary fiber (SDF) did not change significantly (Dalgetty & Baik, 2003). 

Fractions obtained by roller milling for lentils and peas had 87% and 89% fiber, respectively 

(Dalgetty & Baik, 2003; Dalgetty & Baik, 2006). 

Hammer Milling 

The hulls of the pulses were milled in a hammer mill. Hammer mills is a type of impact 

mill that is commonly used to produce very fine flour from hard seed coated pulses (Thakur et 

al., 2019). It can be used on a variety of materials though, including soft, medium-hard, and hard 

(Hixon et al., 1990). It uses impact as its force to break up samples (Thakur et al., 2019), which 

means it uses collisions between the wall and the powder particles to mill (Pelgrom et al., 2013). 

With this technology, the presence (or lack) of a screen is influential on the particle shape 

distributions obtained (Scanlon & Lamb, 1995).  
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For faba beans, hammer milling resulted in pulses flours that were superior in functional 

properties (such as total phenolic content and resistant starch) to other milling methods like 

screw crushing or jet milling (Limsangouan & Isobe, 2009). Conversely, hammer milling may 

lead to lower cell wall content depending on processing parameters used (Maaroufi et al., 2000). 

Additionally, one of the drawbacks of this high-speed fine milling technology is that more starch 

damage can occur (Kerr et al., 2000). However, a study found that roller milling resulted in more 

starch damage than hammer milling (Maskus et al., 2016). 
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CHAPTER 3.    MATERIALS AND METHODS 

Study Design 

This study utilizes a randomized 5x5 crossover study design with five different meals 

(Glucola control beverage, whole lentils meal, lentil flour meal, whole peas meal, and pea flour 

meal). The Iowa State University Institutional Review Board approved recruitment of human 

subjects for the study and all participants provided written, informed consent (IRB #17-191) 

(Appendix A). Each day was separated by two days to one week, and lasted about 4 hours 

(starting around 7 a.m. and finishing at approximately 11 a.m. or 12 p.m. depending on start 

time). All testing occurred at the Nutrition and Wellness Research Center at the Iowa State 

University Research Park (Ames, IA). Participants were given a timetable with study procedures 

and payment schedule (Appendix B) detailing each step of the study, as well as instructions on 

study protocols (Appendix C). 

Study Population 

Adults aged 24-75 with type 2 diabetes were recruited from Ames and neighboring 

communities to participate in the study. Recruitment methods involved the use of half-page and 

full page fliers (Appendix D, Appendix E), newspaper ads, newsletters and e-mail or listserv 

(Craigslist) announcements. Participant eligibility was determined through online screening 

(www.surveymonkey.com) and/or oral interviews in person or over the phone using a list of 

screening questions. 

At the time of study consent, participants were instructed on all study forms and selected 

a commercial frozen dinner that served as their last meal on pre-test days. Available options were 

Marie Callender’s meals (ConAgra Brands, Chicago, IL, USA): Roasted Turkey and Stuffing, 

Honey Roasted Turkey Breast, Chicken Teriyaki, or Salisbury Steak (with cheesy broccoli and 
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cauliflower or with mac and cheese). Optional snacks included: dark chocolate Milano cookies 

(Pepperidge Farm, Norwalk, CT, USA) or Honey Maid Teddy Grahams (Nabisco, East Hanover, 

NJ, USA). The optional snacks were offered at the time of meal selection in case participants felt 

their frozen dinner would not be satiating enough. These measures were in place to account for 

the second-meal effect, where a first meal can continue to affect the glycemic response at the 

second meal (Higgins, 2011). 

Additionally, participants filled out a medical history questionnaire (Appendix F) and 

Food Frequency Questionnaire (FFQ) (Appendix G) to obtain information on medical conditions 

and dietary habits at baseline. The medical history questionnaire provided a method to check for 

any underlying medical conditions that may affect study participation. Information obtained from 

the FFQ was used to compare food consumption to the U.S. Dietary Guidelines. Questions on 

demographics were also presented at the end of the FFQ. 

All participants were physician-diagnosed with T2DM at least 4 months prior to starting 

the study. Recruited participants managed diabetes with metformin (also known as Glucophage, 

Gluformin, or Carbophage), GLP-1 receptor agonists, (specifically Trulicity, which is a once-a-

week injectable drug), or diet and exercise. Metformin was allowed in short/rapid acting because 

of its short-term effect, as well because of its well-perceived and documented profile as a 

medication. Trulicity was allowed because it has a long-lasting background effect on glucose 

metabolism due to its weekly injections and would lead to more consistency over time compared 

to daily medications. Other inclusion criteria included body mass index (BMI) 22-39.9 kg/m2, 

HbA1c% ≤10%, and ability to walk on own and feed oneself.  

Participants were ineligible if any of the following applied to them: smoker (cigarettes 

and/or e-cigarettes), known food allergy or intolerance (to beans, peas, lentils, gluten, eggs, 
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dairy, wheat, tomatoes, soy, or peanuts), pregnant/lactating, diagnosed with a gastrointestinal 

disease (other than gastroesophageal reflux disease), 10% or more weight change within the past 

6 months, on a salt- or sodium-restricted diet, and taking excluded medications. Excluded 

medication classes included: insulin, sulfonylurea, thiazolidinedione antidiabetics, meglitnides 

(glinides), α-glucosidase inhibitors, or DDP-4 Inhibitors. These medications are known to affect 

glucose control, such as by lowering HbA1C, PPG and FPG (Fonseca, 2003). Further, these 

medications were excluded to minimize potential modes of action at work. Other medications not 

known to affect glucose or insulin metabolism were allowed if current treatment dosages had 

been for ≥ 6 months, and medication dosage was not to be altered during the study period.  

Participants were excluded from further participation if they were unable to adhere to the study 

protocol after starting the study.   

Sample Size 

The sample size required for a power level of 80% and a type 1 error probability (α) of 

0.05 was determined using a shifted-t distribution. This method is suitable for small sample sizes 

(De Winter, 2013), which could describe the population with T2DM in Ames. It was determined 

that a minimum of eleven (11) adults with T2DM was adequate to test our study hypotheses. 

Appendix H shows the equation used.  

Materials 

Pulses 

Whole pulses  

Green peas (Pisum sativum, var. Hampton) and green lentils (Lens culinaris, var. 

Avondale) from the 2017 crop year were sourced by the USA Dry Pea & Lentil Council.  

Varieties were grown within 5 miles of each other in Great Falls, MT, USA. Select properties 

and characteristics from the 2017 U.S. Pulse Quality Survey are previously discussed in Pulses 
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included in the study in Chapter 2. Nutrient analysis on the pulses by Eurofins Scientific 

Incorporated Nutrition Analysis Center (Des Moines, IA, USA) are presented later in this section 

under Analysis.  

Pulse flour production 

Pea and lentil samples were processed into flours at North Dakota State University 

(NDSU), Fargo, ND by Dr. Clifford Hall. The study’s pulses were not dehulled, in contrast to 

common commercial practices for pulse flour (Patterson et al., 2017). The nutritional differences 

between a commercial lentil flour (from Harvest Innovations) and this study’s flours are 

presented in Table 3.1. The difference between the two flours in fiber and available CHO content 

is striking. The commercial lentil flour has 4 grams of fiber, and the study lentil flour has 19 

grams. Due to the lower fiber content, the commercial flour has substantially more available 

CHO than the study lentil flour. The lower fiber is due to the removal of the hulls, which contain 

a large portion of the fiber in pulses.  

Table 3.1. Nutrient differences between commercial and study flours. 

Attribute Harvest Innovations 
dehulled green lentil flour 

(commercial) 

North Dakota State 
University green lentil 

whole flour (study) 

Calories (kcal) 363 361 

Total Carb. (%) 62.06 60.35 

Fiber (%) 4.40 19.10 

Avail. CHO (%) 57.66 41.25 

Protein (%) 25.51 24.78 

Fat (%) 1.39 2.22 

 



www.manaraa.com

46 
 

Each step was applied individually to the pulses (the peas and lentils were not combined). 

First, pulses were soaked overnight at 25ºC in water (10 parts water 1 part pulse). Soaking was 

done for an easy removal of the seed coat, through softening the pulse’s exterior matrix (Thakur 

et al., 2019). Second, pulses were drained over a 40 mesh sieve (Gilson Inc., Lewis OH), with 

any material passing through the screen discarded. Then, pulses were placed on perforated 

baking pans in single layers (approximately 0.45 kg per tray). Heat treatment was completed in a 

Baxter OV300G Mini Rotating Rack Convection Oven (Baxter Manufacturing Co., Orting WA) 

set at 149ºC for 18 minutes (lentil) or 33 minutes (peas). Next, the pulses were mixed at five 

minute intervals until the end of their heating time. 

After the mixing step, the heat-treated pulses were milled in a 2-step system with a roller 

mill (roll stands by Creason, Wichita, KS; rolls by Buhler AG, Uzwil, Switzerland). The first 

pass dehulled the pulses using a roller mill, and the second pass milled the cotyledon. Specific 

weight ratios are not available. The first pass was at 0.7 kg/min feed rate with corrugated rolls (8 

% spiral, 0.1 mm land, 8.9 flutes per cm, 0.254 mm roll gap) using sharp to sharp action and a 

front/back roll speed differential of 1:2.5 (resulted in hull fraction and cotyledon fraction). The 

second pass, which was at 0.3 kg/min feed rate with smooth rolls (0.038 mm roll gap) and a 

1:1.23 front/back roll speed differential was done on the cotyledon fraction. Hulls obtained from 

the break roll (first pass in the roller mill) were subsequently milled in a hammer mill (Model 

DASO6, Fitzpatrick, Elmhurst, IL) at 102 m/s hammer speed, and 0.838 mm diameter screen 

aperture. 

After milling, the hulls were fed back into the pulse samples and the pulses were sifted 

through 80 mesh and 100 mesh sieves. The particle sizes for the flours are shown in Table 3.2. 

An 80-mesh sieve was used for above 177 µm, and a 100-mesh sieve was used for the other 
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particle size ranges. Particle size classifications are widely variable in literature (Cloutt et 

al.,1986; Daubenmire et al., 1993; Indira & Bhattacharya, 2006; Singh et al., 2015; Thakur et al., 

2019, Wu & Nichols, 2005; Zucco et al., 2011), so the flours used in this study could be 

classified as coarse or fine. 

Table 3.2. Percentage Division of Flour Particle Size 

Particle Size Lentil Flour (%) Pea Flour (%) 

Above 177 µm 3.4 5.1 
150-176 µm 28.5 61.6 

149 µm and smaller 61.1 33.3 
 

Whole vs. flour equivalency calculations 

Portions for whole pulses and pulse flours were matched to be equivalent to ½ cup dry 

weight serving of pulses (USDA, n.d.; HHS & USDA, 2015). The calculations were made based 

on the percentage of moisture compared to dry solids per 100 grams. Values used were from the 

proximate analysis provided by Eurofins Scientific Incorporated (Des Moines, IA) and all 

weights were in grams. A ½ cup serving of each whole pulse treatment was determined. The dry 

solid weight per 100 grams of each whole pulse and pulse flour was calculated using Eq. 1. The 

amount of dry whole pulse solids per 1 cup was calculated using Eq. 2. The flour equivalency to 

the whole pulses was calculated using Eq. 3. The amount of flour required for an equivalent ½ 

cup dry weight serving to the whole pulse counterpart was derived from Eq. 3.  The resulting 

calculations for equivalent amounts are listed in Table 3.3. Calculations with the actual test 

values are shown in Appendix I.  

𝐷𝑟𝑦	𝑠𝑜𝑙𝑖𝑑	𝑤𝑒𝑖𝑔ℎ𝑡	 𝑔 = 100	(𝑔) − 𝑠𝑎𝑚𝑝𝑙𝑒	𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒	(𝑔)   (Eq. 1) 

9:;	<=>?@	AB?C@	C>?D9C	(E)
F	GBA

= E:HIC	>J	G>>K@9	<=>?@	AB?C@
F	GBA

	𝑋 9:;	C>?D9	<@DE=M	(E)
FNN	E

   (Eq. 2) 
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O?>B:	(E)
F	GBA

= 9:;	AB?C@	C>?D9C	A@:	F	GBA
9:;	C>?D9	<@DE=M	>J	J?>B:

      (Eq. 3) 

Table 3.3. Pulse Equivalent Amounts 

Pulse Type Whole (g) Flour (g) 
Pea 76.00 32.81 
Lentil 80.00 40.13 

 

Analysis 

Cell wall analysis was completed at Michigan State University (East Lansing, MI) by 

Amber Bassett (data not shown). Additionally, proximate, starch, and mineral analysis were 

performed. Proximate analysis of test foods (whole lentil, lentil flour, whole pea, pea flour, 

spaghetti sauce, and wheat bread) was conducted by Eurofins Scientific Incorporated Nutrition 

Analysis Center (Des Moines, IA, USA) using standard methods for total fat (AOAC 954.02), 

ash (AOAC 942.05), crude protein/total nitrogen (AOAC 992.15; AOAC 990.03), moisture 

(AOAC 925.09), total starch (AOAC 996.11), total dietary fiber (TDF, AOAC 991.43), calories 

(CFR – Atwater calculation) and total carbohydrates (CFR 21-calculation). Available 

carbohydrates was derived from the calculation: avCHO = total carbohydrates – TDF. Two 

samples were analyzed for each food item. Moisture contents were used to determine serving 

size in calculations (Appendix I). Proximate analysis was also provided by Dr. Hall’s laboratory. 

Nutrient Analysis 

The nutrient composition values per 100 grams based on Eurofins data are shown in 

Table 3.4. For 100 g of cooked lentils or peas, nutrient content claims can be made on the fiber 

(Marinangeli et al., 2017). In other regions, including Australia, Canada, Europe, nutrient content 

claims can be made on protein and fiber for 100 g of all types of cooked pulses (beans, lentils, 

chickpeas, peas) (Marinangeli et al., 2017). 
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Energy, total carbohydrates and fat were similar among the four pulse treatments. The 

treatments containing lentils were both higher in protein than the pea containing treatments. The 

flour meals had slightly more fat than the other treatments, but other than that there are no 

striking contrasts comparing them nutritionally to the treatments. However, when we compare a 

flour treatment to its whole counterpart, there are a few notable differences. Differences between 

the pea flour and whole pea meals include a higher fat content, larger weight, and lower fiber 

content for the pea flour meal. Differences between the lentil flour and whole lentil treatments 

include a higher fiber content, slightly higher protein, larger weight, and lower CHO for the lentil 

flour treatment. Notably, all pulse treatments contained fiber, protein, and fat, while the control 

treatment only contained CHO. 

Table 3.4. Nutrient Composition of Test Meals 

Characteristics  Glucola  
control  

Whole 
lentil   

Lentil 
flour   Whole pea   Pea flour   

Total weight (g)   215  295.6  339.0  295.6  335.7  
     Pasta Sauce (g)  --	 166.6  166.6  166.6  166.6  
     Bread (g)  --	 49.0  49.0  49.0  49.0  
     Pulse (g)  --	 80.0  40.1  76.0  32.8  
     Water (g)  --	 --	 83.3  --	 83.3  
     Sugar (g)  --	 --	 --	 4.0 	 4.0 	
	 	 	 	 		 		
Energy (kcal)  200  391  392  382  383  
Total Carbohydrate (g)  50  66.8  66.0  68.2  67.7  
Fiber (g)  0  11.6  13.9  12.3  11.5  
Available CHO (g)  50  55.2  52.1  55.9  56.3  
     Pasta Sauce (g)  	 15.6  15.6  15.6  15.6  
     Bread (g)  	 20.0  20.0  20.0  20.0  
     Pulse (g)  -	 19.6  16.6  16.3  16.7  
     Sugar  	 --	 --	 4.0 	 4.0 	
Protein (g)  0  17.0  17.6  13.8  13.8  
Fat (g)  0  6.1  6.3  5.9  6.3  
kcal = kilocalorie, g = grams 
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Starch Analysis 

Starch analysis was also performed by Dr. Clifford Hall’s laboratory. A comparison of 

total starch values from Eurofins and Dr. Hall’s laboratory are presented in Table 3.5. Total 

starch values from Eurofins showed the following: raw lentils (38.8%), boiled lentils (15.8%), 

lentil flour (42.2%), raw peas (40.8%), boiled peas (14.1%), and pea flour (36.9%). This data 

shows boiling resulted in a decrease in total starch for both pulse samples. Based on this 

information, theoretically the order of total starch from highest to lowest in our test meal samples 

was theoretically: lentil flour, pea flour, boiled lentils, and boiled peas. For the purpose of this 

thesis, these are the values used in discussions regarding total starch, though data from North 

Dakota State University is still presented in this methodology section. Conversely, based on total 

starch information from Dr. Hall’s laboratory, the pea flour had higher total starch than the lentil 

flour. These values may vary based on cooking methods applied for the analytical analysis. 

Recall that based on the 2017 U.S. Pulse Quality Survey (NPGA, 2018), the Avondale lentils had 

a higher total starch content than the Hampton peas. Under this observation, the Eurofins data is 

aligned with the survey. This study’s own test procedures would need to be taken into 

consideration for the total starch calculations, which is an area future work can explore.  

Resistant starch values were provided by Dr. Hall’s laboratory and determined using a 

Megazyme RS kit (Megazyme, Ireland) procedure. Resistant starch values from Dr. Clifford 

Hall’s lab (Table 3.6) show that the content increased from raw peas to pre-cooked pea flour 

(14.4% to 27.5%) and decreased from raw lentils to pre-cooked lentil flour (29.1% to 16.9%). 

This aligns with previous findings by Brummer and colleagues (2015), who found that green 

lentils had the lowest RS compared to peas, beans, red lentils, and chickpeas. 
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Table 3.5. Total starch analysis by Eurofins and NDSU. 

Table 3.6. Resistant starch analysis of pulses (NDSU). 

Sample Total Starch 
(%) 

Starch (% of 
total CHO) 

Resistant 
Starch (%) 

Resistant 
Starch (% of 
total starch) 

Raw pea 43.0 61.9 14.4 23.3 

Pre-cooked pea 
flour 

43.9 64.7 27.5 42.5 

Raw lentil 41.1 62.7 29.1 46.4 

Pre-cooked lentil 
flour 

40.7 62.8 16.9 26.9 

 

Mechanisms behind an increase or a decrease in resistant starch were discussed earlier in 

the Pulse Processing section of Chapter 2. The increase seen in the peas may be related to starch 

retrogradation, while a decrease may be due to amylose inhibitors (Wang et al., 2010). A 

decrease in resistant starch is expected, though the peas saw an increase. Additionally, other 

work using lentils saw an increase with cooking or dehulling compared to raw lentils (Wang et 

Sample Eurofins NDSU 

Raw pea 40.8 43.0 

Boiled peas 14.1 n/a 

Pea flour 36.9 44.9 

Raw lentil 38.8 41.1 

Boiled lentils 15.8 n/a 

Lentil flour 42.2 40.7 
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al., 2009). This study’s lentils do not show this pattern, possibly due to the presence of the hull, 

variety, and test procedures. 

Mineral Analysis 

Mineral analyses of the pulses were provided by Dr. Hall’s laboratory. The mineral 

content of the samples is shown in Table 3.7. Many of minerals presented are important for 

glucose metabolism through several mechanisms (Martini et al., 2010). Several of these minerals 

have been proposed as reducing the risk of T2DM or improving metabolic functions associated 

to diabetes, including calcium, magnesium, potassium, and sodium (Martini et al., 2010). Of the 

minerals presented, nutrient content claims in the United States could be made for 100 g cooked 

lentils on their iron, phosphorus, and zinc content (Marinangeli et al., 2017). Similar claims 

cannot be made in the United States for 100 g cooked peas (Marinangeli et al., 2017). 

When comparing within a pulse type (i.e., raw pea compared to pre-cooked pea flour), 

there are differences in calcium, iron, magnesium, potassium, phosphorous, selenium, and 

sodium according to physical form. Copper, manganese, and zinc remain similar between pulse 

forms. Potassium content decreases from raw pea to pea flour but increased in the lentils. 

Selenium decreased with both pulse types according to form (raw whole to pre-cooked flour). 

Calcium, iron, magnesium, and phosphorous content increases with changes in form (whole 

pulse to flour). In a previous study looking at chickpea, pigeonpea, urd bean, mung bean, and 

soybean, a different effect was seen with some of these minerals. The publication reported 

minimal effects from processing (autoclaving, roasting, germination, and fermentation) on 

calcium, magnesium and iron (Chitra et al., 1996). However, the increases seen in the pulse 

flours may be explained by bioavailability. Sandberg (2002) reported legumes generally have 

poor bioavailability because of antinutrient factors. These factors, including lectin, raffinose, 
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oligosaccharides, polyphenols and phytate, can lower nutrient bioavailability, as well as 

digestibility (Sandberg, 2002). 

In the case of dehulling, this practice reduces phenolics (Lin et., 2016). While the study 

flours’ hulls were reinserted into the final product, a milling pass did remove the seed coat from 

the pulses so it may have reduced the phenolic content. Mentioned earlier, polyphenols inhibit 

digestive enzymes α -glucosidase and α –amylase (Lin et al., 2016), and thus their presence 

would have a positive impact on glycemic control. Further, processing can reduce lectins (Singh 

et al., 2017). The milling processes may have made some of these minerals more bioavailable by 

reducing antinutrient factors. 

Comparing the flours to each other, the pea flour had more calcium, iron, magnesium, 

and selenium than the lentil flour. On the flip side, lentil flour had more potassium, phosphorous, 

sodium, and zinc than the pea flour. Information in the following paragraphs is presented on the 

effects of calcium, magnesium, potassium, and sodium (as sodium chloride) in relation to 

glucose metabolism.  

Table 3.7. Mineral analysis of pulses. 

Mineral Raw pea Pre-cooked 
pea flour 

Raw lentil Pre-cooked 
lentil flour 

Calcium (mg/kg) 512 675 293 373 

Copper (mg/kg) 6 6 8 6 

Iron (mg/kg) 41 76 41 67 

Magnesium (mg/kg) 748 758 640 690 

Manganese (mg/kg) 7 5 8 8 

Potassium (mg/kg) 6162 5677 5947 6026 
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Table 3.7. (continued) 
 
Mineral Raw pea Pre-cooked 

pea flour 
Raw lentil Pre-cooked 

lentil flour 
Phosphorous (mg/kg) 2789 2847 2477 3102 

Selenium (µg/kg) 246 236 248 225 

Sodium (mg/kg) 120 110 132 199 

Zinc (mg/kg) 34 33 36 36 

 

Calcium metabolism is linked to the effects that vitamin D has on glucose metabolism, 

namely a vitamin D deficiency. Vitamin D deficiency indirectly promotes glucose intolerance, 

altered insulin secretion and T2DM because of calcium metabolism (Palomer et al., 2008). In an 

animal model looking at vitamin D and calcium, dosages of these two resulted in increased 

insulin secretion and decreased plasma glucose (Cade & Norman, 1987), which is beneficial for 

glucose metabolism. Further, a randomized controlled trial showed a decreased fasting glucose in 

individuals with impaired glucose tolerance with vitamin D and calcium (Pittas et al., 2007). 

Calcium alone can worsen insulin resistance, if the intracellular calcium concentration is 

increased because of reduced intracellular magnesium (Barbagallo et al., 2003). 

Lopez-Riadura and colleagues (2004) found that magnesium supplementation for 4 to 16 

weeks resulted in a decreased fasting plasma glucose in adults with T2DM. Magnesium is a 

second messenger for oxidative glucose metabolism (i.e., insulin action) (Martini et al., 2010), 

and a deficiency results in impaired insulin action through defective insulin receptor activity or 

increased intracellular calcium (Barbagallo et al., 2003). Insulin resistance is consequently 

worsened when either of these events occur (Barbagallo et al., 2003). 
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Potassium has been shown to have a negative correlation with plasma glucose (Zillich et 

al., 2006). This might be due to reduced insulin secretion, which results in impaired glucose 

tolerance (Rowe et al., 1980). 

Lastly, sodium chloride may decrease insulin sensitivity by stimulating plasma renin 

secretion when present in low quantities (Townsend & Zhao, 1994; Townsend et al., 2007). On 

the flip side, plasma renin activity is inhibited when there is increased sodium chloride, in efforts 

to maintain blood pressure (Towsend & Zhao, 1994; Townsend et al., 2007). 

There are interesting relationships between various minerals and glucose metabolism. 

However, the focus of this study was not on the minerals so conclusions based on this factor may 

be limited. For instance, mineral analysis was not completed on the cooked (boiled) pulses and 

the bioavailability of these minerals is unknown in this study. Nonetheless, this brief discussion 

highlighted some of the differences in mineral content between the pulse flours and proposed 

mechanisms behind those minerals’ effects on glucose control, the impact of processing going 

from raw to flour, and brought up the possibility of the role antinutrients play in mineral content. 

Test Meal Content 

Participants received a total of five test treatments (four pulse treatments and one control 

treatment). The control treatment was a glucose tolerance beverage, Glucola® 50 g (Thermo 

Fischer Scientific, Waltham, MA, USA). All test meals had an approximate 50 g of available 

carbohydrates (actual nutrient composition in Table 3.4). The masses for each of the pulses were: 

40 g lentil flour, 33 g pea flour, 80 g whole lentils, and 76 g whole peas. Pulse treatments were 

served with 49 g or approximately 1 slice of Pepperidge Farm Honey Whole Wheat Grain bread 

(Pepperidge Farm, Norwalk, CT, USA) and 167 g of Classico traditional spaghetti sauce (The 

Kraft Heinz Company, Glenview, IL, USA). The whole pea and pea flour meals had an 

additional 4 g of sugar (company, location). Both the bread slice and sugar were used in order to 
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meet the desired available carbohydrate content (~50 g). The spaghetti sauce was used to 

improve palatability and serve as a simple food matrix to reduce confounding influences from 

multiple food ingredients. The pulse flour treatments had 83 g (1/3 cup of water) added for 

palatability. 

Test Meal Preparation 

Test treatments were prepared in the kitchen of the NWRC. All ingredients were also 

stored in the building’s kitchen. All ingredient weights were measured using a Mettler PC 4000 

scale (Mettler Toledo, Columbus, OH, USA). Actual weights during meal preparation were 

recorded by staff. The control treatment of 50 g Glucola was stored in a walk-in cooler at 4°C.  

The unopened 296 mL bottle was inverted slowly 2-3 times to assure mixing of contents, then all 

contents were poured into a drinking glass and immediately served to the participant. No other 

food besides bottled water was served with the Glucola beverage. 

The whole peas and whole lentils were soaked (~16 h and ~2 h, respectively) at room 

temperature (20C) in reverse osmosis (RO) water in a 1:3 ratio. Water from the soaked pulses 

was then discarded and the pulses were rinsed under cold running water. This is done to reduce 

oligosaccharides, which are correlated to gastrointestinal discomfort, such as flatulence (Wang et 

al., 2007). Several studies show reduction from soaking (Han & Baik, 2006; Agbernorhevi et al., 

2007; Tajoddin et al., 2010), and this process may involve two mechanisms by which 

oligosaccharides are reduced. The proposed mechanisms are the activation of a-galactosidase 

which breaks down oligosaccharides (Rakshit et al., 2015), or the water absorbed causes the 

oligosaccharides to dissolve and leach out of the pulses (Han & Baik, 2006; Agbenorhevi et al., 

2007). 
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In a saucepan, RO water was set to medium to high heat on a Southbend commercial gas 

range (Southbend, Fuquay-Varina, NC, USA). The whole pulse was added once the water 

reached boiling point (100°C). Whole peas simmered for approximately 1 hour, and whole lentils 

simmered for approximately 12 minutes.  All whole pulses were tested subjectively for 

tenderness by sampling. If pulses were very, moderately or slightly hard, then they were cooked 

longer. The ideal tenderness was between slightly hard and slightly soft. Very soft or mushy 

pulses were not served to participants. 

All pulse treatments were also served with toasted bread and mixed in spaghetti sauce. 

A full slice of bread was weighed to 49 g, cut in half diagonally and toasted in a Proctor Silex 

toaster (Hamilton Beach Brands, Glen Allen, VA, USA) at the medium setting for approximately 

two minutes. The end pieces of the loaves were not used due to their small sizes. If the weight of 

the full slice was slightly less than 49 g, a small portion of a smaller slice was cut off to meet the 

weight. The small piece was not toasted and was instead mixed into the sauce mixture. If the 

weight was slightly more, a small portion of a corner on the slice was trimmed off and discarded. 

The toasted slice was served on a plate next to the bowl containing the treatment meal. 

Unopened jars of spaghetti sauce were kept at room temperature (20°C) in a pantry. 

Opened jars were stored in a walk-in cooler at 4°C. The jar was first shaken, then the sauce was 

stirred with a knife or long spoon. The digital scale with a clean small white bowl was tared to 

zero. The sauce was then scooped into the bowl and weighed out to 166.6 g. The sauce was 

covered with a small white plate and set aside until the rest of the meal’s ingredients were 

prepared. Heating of the sauce was the final step in meal preparation. 

In a separate bowl, 166.6 g of Classico traditional spaghetti sauce was heated in a 1300W 

Panasonic microwave (Panasonic, Kadoma, Osaka, Japan) at 100% power, with a lid to prevent 
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moisture loss. The sauce was heated on high power level for 15 seconds, and then stirred. This 

was repeated for a total of 3 times. For pulse flour treatments, 83.3 g of RO water was heated in 

the microwave for 1 minute. The pulse flour was weighed out and mixed with the RO water and 

166.6 g of spaghetti sauce. 

Forms 

Medical history questionnaire 

Participants completed a medical history questionnaire, providing a list of their 

medications and supplements, as well as a detailed list of any previous medical conditions 

(Appendix F). 

Food frequency questionnaire 

A Food Frequency Questionnaire (FFQ), also called a dietary assessment screener in our 

study, was given to participants to complete at their screening visit (Appendix G). It asked the 

participants how often they ate certain foods. With this information, we gathered the number of 

servings of fruits and vegetables they consume a day, along with their grams of fiber, and the 

percentage of fat that makes up their diet (Block et al., 2000). The FFQ is a validated dietary 

assessment tool, with its dietary intakes correlating with type 2 diabetes (Yang et al., 2010; Hu et 

al., 2001). 

Food log 

For each pre-test day, participants filled out 24-hour dietary recalls (food logs) (Appendix 

J) and staff reviewed these with participants on the morning of test days. Food scales and 

measuring cups were provided to participants at their request or if the quality of their food logs 

depended on it. These food logs were to monitor and control for any drastic changes to dietary 

habits throughout the study, as well as compliance with dietary restrictions required by the study 

(on pre-test days), such as food intake consistency, no caffeine and fasting. 
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Physical activity 

Participants completed the International Physical Activity Questionnaire (IPAQ) form 

(Appendix K) at their screening visit and on each of the five test days. The self-report short form 

asked the participants how many hours they spent sitting, and how many days and hours they 

spent walking and doing moderate and vigorous physical activity. This ensured participants did 

not participate in any moderate or vigorous activity the day before testing nor start a new 

exercise routine that would increase their metabolism. Moderate-intensity exercise, described as 

“walking briskly,” results in a half reduction of postprandial glucose levels. These effects are 

evident when 90 minutes of moderate-intensity exercise is performed in a 2-hour range before or 

after a meal (O’Keefe & Bell, 2007; Levine, 2007). Physical activity categories on the IPAQ 

were high (approximately one hour or more per day of at least moderate intensity), moderate 

(approximately half an hour on most days of at least moderate intensity), and low (none of the 

criteria for moderate or high levels is met). The IPAQ offers moderate and vigorous activity 

definitions according to the physical effort required and observed changes from normal 

breathing. A meta-analysis (Kim et al., 2013) found the overall effect sizes of the IPAQ were 

medium-sized (ranging from 0.32-0.49) for walking, total moderate physical activity (TMPA), 

vigorous physical activity (VPA), and total physical activity (TPA). Moderate physical activity 

(MPA) had a small-sized effect size of 0.27 (Kim et al., 2013). The total effect sizes were 

calculated according to Cohen’s guideline (Kim et al., 2013). 

Data Collection Procedure 

Pre-testing protocol 

Participants were required to obtain adequate sleep (7-9 hours) (Hirshkowitz et al., 2015) 

on nights prior to test dates. They were instructed to refrain from caffeine intake, such as 

caffeinated beverages, foods or medications. Other dietary restrictions included alcohol 



www.manaraa.com

60 
 

consumption and other pulses for the 24-hour period prior to the morning testing appointment. In 

addition, participants were asked to refrain from moderate or vigorous exercise (as defined by 

the IPAQ) 24 hours prior to test dates. Participants could take pre-approved medications 

including metformin up until the night before testing. If using injectable medication like 

Trulicity, the day of dosage was consistent throughout the study. Unless circumstances 

warranted, participants were not allowed to take medications until after testing completion. 

Participants were required to fast for 12 hours preceding their testing time. Their frozen 

meal and optional snack had to be consumed prior to fasting as their last meal consumption. 

Once their fasting period began, they were only allowed to drink plain water. After completing 

their testing for the day, the pre-testing protocols no longer applied and participants resumed 

their normal activities and dietary habits. 

Participant arrival 

Upon arrival for test days, participants were asked a series of questions to assess protocol 

compliance regarding fasting, diet, exercise, and sleep. After this, they had their anthropometric 

measurements taken (blood pressure and weight), followed by a fasting blood draw by a trained 

nurse or phlebotomist. Physical activity restrictions on pre-test days continued until the end of a 

test visit. For the test day morning (approximately 7 a.m. to 12 p.m. at the latest), participants 

refrained from excessive physical activity (i.e., leisurely walking) and occupied themselves at 

tables with laptops or books. 

Anthropometric measurements 

The anthropometric measurement methods are summarized in Appendix L. 

Height, waist circumference, weight 

At the initial screening visit, height measurements and waist circumferences were taken. 

The height measurements were taken using a wall-mounted stadiometer and the waist 
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circumference with a retractable fiberglass tape measurer. Measurements were taken to the 

nearest 0.1 cm by trained staff. Waist circumference was measured at the iliac crest according to 

NHANES Anthropometry Procedures Manual (Centers for Disease Control and Prevention, 

2017). These measurements were only taken at baseline for body mass index calculations. 

Body weight was also measured using methods from NHANES Anthropometry 

Procedures Manual (Centers for Disease Control and Prevention, 2017) and the Fitness & 

Metabolism Unit of the NWRC in Ames, IA, US (report not shown). Body weight was measured 

to the nearest 0.1 kg at the screening visit and/or at the start of each test day using a Detecto 

digital scale (Webb City, Missouri). Light clothing was allowed, though shoes, sweaters, or 

jackets were removed. After the scale was zeroed, participants stepped onto the platform with 

their arms at their sides and looked straight ahead. This was repeated once more to obtain a total 

of two readings which were averaged. 

Body mass index (BMI) 

The body mass index (BMI) was calculated at baseline with measured height and weight 

measurements using the Metric System. The following formula was used: weight 

(kg)/[height(m)]2. The resulting calculation used to account for centimeters as the common unit 

of height measurement: [weight (kg) / height (cm) / height (cm))] * 10,000. Both the formula and 

calculation are used by the Centers for Disease Control and Prevention (Centers for Disease 

Control and Prevention [CDC], 2014). 

Blood pressure 

Blood pressure was measured in a seated position at all visits using an Omron automatic 

digital blood pressure monitor (Omron Healthcare, Inc., Lake Forest, IL, USA) after 5 minutes of 

sitting. The arm was in a relaxed position with the antecubital fossa facing the researcher and the 

participant’s arm resting on a table. 
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Test meal procedure 

Fasting blood draw and meal intake 

A trained nurse collected blood at fasting for baseline glucose values.  The Blood 

Handling and Analysis section details blood tests completed at fasting. After this blood draw, 

participants ate their meal treatment. Participants were allowed to drink bottled water during all 

of their meals. Meal start and meal end time were recorded. Each participant ate the test meal in 

an isolated dining room and avoided electronics while eating to decrease distractions. 

Participants were expected to consume the entire test meal in a timely fashion (within 15 

minutes). 

Post-meal procedure 

Blood collection 

Blood samples were collected via catheter or venipuncture by trained nurses or 

phlebotomists at the fasting state and postprandial at 30, 60, 90, 120, 150, and 180 minutes. The 

post-treatment blood draws began after the subject had finished consuming the treatment meal. 

Blood collection protocols were followed according to a Standard Operating Procedure (SOP) 

for Obtaining and Working with Human Blood Samples (Appendix M), produced by Jeanne 

Wempe Stewart, Assistant Scientist II at Iowa State University (Ames, IA). Blood tests 

performed are detailed in the Blood Handling and Analysis section. 

Preparation for new test day 

Prior to leaving the testing site, participants were given a new food log form to complete 

for their next test day. They were also given a new frozen meal and dessert (if selected) to take 

home for the next pre-test day.  
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Data Handling 

Microsoft Excel 2016 (Microsoft, Redmond, WA, USA) was used for data input for all 

study measurements (i.e., dietary information, demographics, glucose values). SPSS Statistics 

software version 25.0 for Windows (IBM Corporation, Somers, NY, USA) was used for 

statistical analyses using imported Excel datasets. ESHA Food Processor® SQL Software 

(version 11.3, ESHA Research, Salem, OR, USA) was used for food log data input and to run 

macronutrient summary reports from participant food logs. Nutrition Quest (Nutritionquest Inc., 

Berkeley, CA) is an online assessment tool that was used to input FFQ information and generate 

summary reports on servings and amounts consumed (percentages or servings) of fat, fruits and 

vegetables, and fiber. Continuous variable data are reported as mean and standard errors of the 

mean. 

Descriptive Analysis 

Descriptive statistics were used for participant demographics, medical parameters (i.e., 

triglycerides), food frequency questionnaires, food logs, and physical activity. 

ANOVA 

A multivariate analysis of variance (MANOVA) for repeated measures with time and diet 

as factors was used to evaluate differences in glucose measures between the five meal 

treatments. A one-way analysis of variance (ANOVA) was used to compare means for glucose 

net change, iAUC, and dietary intake. Tukey HSD post-hoc test was used to identify mean 

differences among treatments and between time points, among iAUC and time points, and 

among macronutrients and treatments or test days. P-values less than 0.05 were considered 

statistically significant. A 95% confidence interval was used for post-hoc analysis. 
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Blood Handling and Analysis 

Blood was drawn by trained nurses and was handled by trained study staff. Handling 

included inverting the test tubes at least 10 times to prevent hemolysis, transporting the tubes in a 

sterile lab cart to the NWRC laboratory, following proper centrifuging procedures, and 

transferring test tubes into appropriate tubes on weekends when the blood would not be collected 

that same day. 

Laboratory tests 

Materials (tubes and requisition forms) were provided by Quest Diagnostics Incorporated 

(Secaucus, NJ, USA). Wood dale, IL location. Two types of tubes were used: Serum Separator 

Tubes® (SST) or Ethylenediaminetetraacetic acid (EDTA) lavender tubes. Blood in SST tubes 

were centrifuged in a Horizon Model mini E (Quest Diagnostics Inc., Secaucus, NJ, USA) at 

3348 RPM for 10 minutes or a Horizon model 642 E (Quest Diagnostics Inc., Secaucus, NJ, 

USA) at 3378 RPM for 15 minutes, both at 22C. The EDTA tubes did not require centrifugation. 

The EDTA tubes were used for the collection of anticoagulated whole blood, necessary for 

Complete Blood Count (non-fasting) and HbA1c (non-fasting) blood tests. The SSTs were used 

for the collection of serum, necessary for the Lipid Panel (fasting) test. Quest Diagnostics also 

performed the blood analysis with a one-to-three day turnaround for results. For the Lipid Panel, 

the low-density lipoprotein cholesterol (LDL-C) was calculated using the Martin-Hopkins 

calculation. These blood tests illustrate overall health. Serum glucose was collected all time 

points (fasting or 0 min, 30 minutes postprandial up to 180 minutes).  

iAUC 

The incremental area under the curve (iAUC) of the blood glucose was used to compare 

the effect of the test meals. Timepoint differences between fasting and post-treatment glucose 

concentrations were determined and iAUC calculations were completed using the trapezoidal 
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rule (Winham et al., 2017). Values below fasting were ignored for the iAUC calculations, as is 

customary (Ramdath et al., 2018; Winham et al., 2017; Ventura et al., 2009). The fasting value 

was subtracted from the postprandial values before the iAUC calculations (Vakkilainen et al., 

2002). The iAUC for blood glucose was assessed between 0-60, 60-120, and 120-180 minutes 

for participants. ANOVA was also used, which is described earlier. 



www.manaraa.com

66 
 

CHAPTER 4.    RESULTS & DISCUSSION 

Study Population 

A total of 111 residents in the greater Ames area expressed interest in the clinical trial 

(Figure 4.1). Of the 111 individuals, 94 did not meet inclusion criteria or did not initiate further 

contact. Common reasons for ineligibility included disqualifying medication use (medications 

not approved for this study), issues with blood draws, and time commitment concerns. Seventeen 

individuals enrolled during the allocation phase. Of the seventeen individuals, two declined to 

participate further due to medication changes or time commitment. Four individuals were 

discontinued from the study after starting due to non-compliance, medical reasons, or time 

commitment. Eleven participants (7 men and 4 women) successfully completed all five test days.  

Demographics 

Descriptive statistics at study entry for the 11 participants are shown in Table 4.1. All 

participants self-identified as Caucasian. The mean HbA1c value was 6.48% +/- 0.2 and 

indicated a good or excellent control of diabetes by meeting a common HbA1c target range of 

under 7% for adults (ADA, 2019). Wong and colleagues (2012) examined results from the 2003-

2006 U.S. National Health and Nutrition Examination Surveys and found that 58% of the cohort 

of adults with T2DM had an A1c of <7%. Most of the participants in this study also met that 

goal, as shown with the mean HbA1c value of 6.48%. The majority of participants (n = 9) used 

metformin to manage their diabetes, with the remaining two using dietary methods and/or 

physical activity. Based on this, and the number of ineligible interested persons on disqualifying 

medications, there appears to be a tendency to medicate T2DM, rather than promote diet and 

exercise as treatment methods. In fact, the prescription of exercise for T2DM is not very 

common (Hordern et al., 2012). 
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Figure 4.1. Consort flow diagram for clinical trial participants 

All participants were in the overweight range or higher, as defined by the CDC (2017). 

Mean BMI was in the obese class 1 category (30.0-34.9) (CDC, 2017). A one-way ANOVA 

showed that body weight and BMI did not significantly vary between the five test days for 

participants (data not shown). These demographics are similar to previous findings from the 

publication by Wong and colleagues (2012). Wong et al. (2012) found just 13.9% of the adults 

with T2DM met a BMI goal of < 25 kg/m2. If looking at < 30 kg/m2 as a goal instead, 43.1% of 

the adults met that goal (Wong et al., 2012). Our study results show that none of the participants 
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were under < 25 kg/m2, while 18% were under < 30 kg/m2. While much lower than the other 

authors’ findings, these results still show a low rate of meeting BMI targets. 

Three participants (27%) had normal waist circumferences (below 88.9 cm or 35 inches 

for women, below 101.6 cm or 40 inches for men), and eight (73%) had large waist 

circumferences (past the mentioned cut offs). National Institutes of Health references were used 

for waist circumference classifications (National Institutes of Health [NIH], n.d.). Compared to 

findings from Wong and colleagues (2012), slightly more participants in this study met a normal 

waist circumference goal, though the rate is still low. The authors reported only 17.7% of the 

adults in the cohort met their gender-specific waist circumference target (Wong et al., 2012). 

Four (36%) participants had normal HDL cholesterol (HDL-C) levels (above 50 mg/dL 

for women or above 40 mg/dL for men), and seven (64%) had low levels (below reference 

values). The 36% is much lower than the findings from Wong et al. (2012), who saw 56.4% of 

adults met their gender-specific HDL-C goals. However, mean low density lipoprotein 

cholesterol (LDL-C) levels were 83.5 mg/dL, which meets the LDL-C goal of <100 mg/dl 

(Wong et al., 2012). 

Five (45.5%) participants had normal triglyceride values (below 150 mg/dL), and six 

(54.5%) had high values (equal to or greater than 150 mg/dL). These results are much higher 

than those reported by Wong and colleagues (2012), who found that 25.8% of the adults with 

T2DM had triglycerides under 150 mg/dL. Standards from the National Institutes of Health were 

used to interpret triglyceride and HDL-C levels (NIH, n.d.). 

Overall, our participants are similar to expectations for HbA1c, waist circumference, and 

LDL-C targets (Wong et al., 2012). The results for BMI were negatively different from previous 

findings, and HDL-C and triglycerides results were positively different (Wong et al., 2012). 
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Conclusions from Wong and colleagues (2012) were that less than half of U.S. adults with 

T2DM met the goals for HbA1c, LDL-C or BMI individually. However, when looking at 

composite goals for HbA1c, blood pressure, and LDL or BMI, just one-tenth or less met those 

goals (Wong et al., 2012). In general, our results show the majority of participants are not 

meeting ideal classifications, except for Hb1Ac and LDL-C. 

Table 4.1. Descriptive characteristics of participants 

Variable Mean ± SEM Range 

Age (yrs) 55.1 ± 4.3 (29.0-71.0) 
Weight (kg)1 101.1 ± 5.5 (80.0-133.4) 
Height (cm)1 173.4 ± 3.0 (150.5-188.2) 
BMI (kg/m2)1 33.4 ± 1.0 (28.0-37.9) 
HbA1c (%) 6.5 ± 0.2 (5.4-8.4) 

Total Cholesterol (mg/dL) 157.1 ± 10.9 (101.0-236.0) 
LDL-C (mg/dL)2 83.5 ± 10.5 (30.0-157.0) 
HDL-C (mg/dL) 43.3 ± 3.0 (34.0-65.0) 

Triglycerides (mg/dL) 203.9 ± 31.0 (86.0-411.0) 
Hemoglobin (g/dL) 13.6 ± 0.5 (11.2-13.6) 

1Values obtained at study entry. 2Baseline values obtained for n = 10 due to high triglycerides. 
BMI = body mass index, HbA1c = hemoglobin A1c , LDL-C = low density lipoprotein cholesterol, HDL-
C = high density lipoprotein cholesterol. 

 
Findings from Dietary Intake and Physical Activity Measures  

Food Frequency Questionnaire 

Table 4.2 shows information obtained from the Food Frequency Questionnaire compared 

to the U.S. Dietary Guidelines for Americans (HHS & USDA, 2015). The majority of 

participants did not meet the recommendations: above recommended calories from fat, and 

below recommended fruit and vegetable servings and fiber intake. These results are not 

surprising. Even in patients who do follow a diet treatment plan for T2DM, there is a low 

adherence to dietary approaches (King et al., 2009). Considering the nutrition transition seen in 

the U.S. (less whole grains, fruits, vegetables and fiber consumed), the study results coincide 
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with this documented dietary shift. These findings emphasize the need for the incorporation of 

wholesome foods for better health, such as pulses. Pulses meet the call for many nutrients 

lacking in the U.S. diet. 

Table 4.2. Percentage of Participants Meeting U.S. Dietary Guidelines 

Dietary Guideline Recommendation  
  

Total 
(11) 

Male 
64% (7) 

Female 
36% (4) 

 
30% or less of calories from fat  
  
Percent calories from fat %  
         Less than 30%  
         30-35% average  
         36-40% high  
         40-50% very high  

 
 
 

0% (0) 
36% (4) 
55% (6) 
9% (1) 

 

 
 
 

0% (0) 
29% (2) 
57% (4) 
14% (1) 

 
 
 

0% (0) 
50% (2) 
50% (2) 
0% (0) 

 
5-9 servings of fruits/vegetables per day  
  
Servings of fruits & vegetables:  
         5 or more per day  
         Less than 5 per day  
 

 
 
 
 

9% (1) 
91% (10) 

 

 
 
 
 

14% (1) 
86% (6) 

 
 
 
 

0% (0) 
100% (4) 

 
At least 20 grams of fiber per day  
  
Dietary fiber intakes  
         20+ grams per day  
         Less than 20 grams per day  
           

 
 
 

9% (1) 
91% (10) 

 
 
 

14% (1) 
86% (6) 

 
 
 

0% (0) 
100% (4) 

 

24-hour Food Logs 

Macronutrient composition of dietary intake 24 hours prior to test days was analyzed 

(Table 4.3). A one-way ANOVA showed no significant mean differences. While the main 

purpose of these food logs was to monitor and control the foods consumed on pre-test days, we 

can also make observations on macronutrients consumed. The information from the food logs 

could also be used in the future to determine the glycemic load of the day. The means of notable 
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nutrients were: 2014 kcal, 199 g of carbohydrates, 3668 mg of sodium, and 21 g of fiber. Since 

the majority of participants were moderately active (detailed below in the Physical Activity 

section), the recommended calorie intake for adults 18 or older is between 1,800 and 2,600 kcal, 

dependent on specific age-gender groups (HHS & USDA, 2015). The variability of limits within 

age-gender groups make the mean caloric intake difficult to interpret. 

However, other limits are easier to interpret. The mean carbohydrate intake (g) of the 

study participants exceeded the Recommended Daily Allowance (RDA) for carbohydrates, 

which is 130 g (HHS & USDA, 2015). The sodium consumed was much more than the Upper 

Limit (UL) < 2,300 mg per day for people 14 years or older (HHS & USDA, 2015). The amount 

of fiber consumed by the participants was less than the recommended grams (ranging from 22.4 

to 33.6 grams, dependent on age-gender group) (HHS & USDA, 2015). These findings give 

similar conclusions as the FFQs, showing that the U.S. eating patterns follow the nutrition 

transition phenomena (suboptimal diet quality). 

Macronutrient composition of evening meals consumed prior to test days was analyzed 

(Table 4.4). A one-way ANOVA showed no significant mean differences in any macronutrients 

prior to the test days. The mean caloric intake was 465.1 kcal, and mean carbohydrate intake was 

56.3 g. The evening meal provided 23% of the day’s calories, 27% of the carbohydrate intake, 

and 38% of the fiber intake. Some of this fiber may have come from non-starchy vegetables, 

depending on the frozen meal selected.  
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Table 4.3. Macronutrient composition of dietary intake 24 hours prior to test days1 

Nutrient Glucola 
control Whole lentil Lentil flour Whole pea Pea flour 

Energy 
(kcal) 

2013.9 ± 293.7 
(992.3-4510.1) 

1884.3 ± 312.1 
(967.3-4838.3) 

1827.5 ± 233.6 
(913.1-3757.9) 

2027.5 ± 305.8 
(920.6-4820.3) 

1927.6 ± 310.1 
(784.8-4820.3) 

Carbohydrate 
(g) 

198.6 ± 20.8 

(102.5-272.7) 
192.3 ± 19.2 
(94.2-293.8) 

186.1 ± 18.9 

(75.5-269.8) 
194.5 ± 18.3 

(75.9-277.0) 
185.7 ± 20.0 

(65.6-277.0) 

Available 
CHO (g) 

178.1 ± 19.7 
(89.5-248.0) 

173.1 ± 17.8 
(84.1-258.0) 

167.6 ± 18.1 
(65.6-248.4) 

174.6 ± 17.2 
(66.0-243.1) 

167.9 ± 18.7 
(57.5-243.1) 

Total fiber 
(g) 

20.5 ± 2.2 
(9.5-35.9) 

19.1 ± 2.4 
(8.0-35.9) 

18.5 ± 2.3 
(9.9-30.9) 

19.8 ± 2.0 
(9.9-33.9) 

17.9 ± 2.4 
(8.1-33.9) 

Total fat (g) 92.8 ± 19.3 
(31.0-260.5) 

82.5 ± 19.7 
(39.6-271.5) 

82.6 ± 15.2 
(44.6-222.3) 

95.4 ± 19.1 
(44.2-271.1) 

88.0 ± 19.5 
(35.0-271.1) 

Saturated fat 
(g) 
 

29.9 ± 5.1 
(9.7-59.4) 

26.0 ± 4.8 
(8.9-65.9) 

27.1 ± 4.9 
(9.7-52.6) 

31.1 ± 5.0 
(13.1-65.6) 

29.2 ± 4.4 
(16.0-65.6) 

Cholesterol 
(mg) 
 

362.6 ± 77.5 
(50.0-801.1) 

302.1 ± 68.2 
(95.0-674.1) 

291.1 ± 59.8 
(65.0-661.9) 

335.7 ± 69.5 
(46.7-667.4) 

311.0 ± 56.6 
(125.4-667.4) 

Sodium (mg) 3668.0 ± 449.0 
(1922.7-
6789.3) 

3137.0 ± 366.6 
(819.2-5590.8) 

2971.6 ± 357.9 
(1120.7-
4800.9) 

3200.8 ± 415.2 
(1001.1-
5785.8) 

 

3187.5 ± 401.1 
(1638.8-
5880.6) 

Potassium 
(mg) 

2418.0 ± 263.7 
(1032.7-
3694.3) 

 

2107.6 ± 317.9 
(950.5-4389.3) 

1919.5 ± 319.2 
(181.7-3953.2) 

2290.3 ± 284.3 
(977.7-4239.3) 

1853.9 ± 314.1 
(545.9-4239.3) 

Protein (g) 102.7 ± 21.1 
(52.3-299.7) 

98.7 ± 23.9 
(57.2-332.6) 

94.2 ± 15.0 
(52.4-228.5) 

105.2 ± 24.7 
(57.1-345.6) 

103.5 ± 24.9 
(55.9-345.6) 

 
1 All values are means ± standard error of the mean (SEM) (range) 
kcal =kilocalorie, mg=milligram, g=gram 
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Table 4.4. Macronutrient composition of evening meals consumed prior to test days1 

Characteristics Value Range 
Energy (kcal) 465.1 ± 12.8 (320.0-808.8) 
Carbohydrate (g) 56.3 ± 1.7 (31.0-87.4) 
Available CHO (g) 48.7 ± 1.7 (24.0-75.4) 
Total fiber (g) 7.6 ± 0.6 (7.0-21.25) 
Total fat (g) 16.0 ± 0.9 (4.5-37.8) 
Saturated fat (g) 5.3 ± 0.4 (1.0-19.1) 
Cholesterol (mg) 56.4 ± 2.2 (35.0-116.8) 
Protein (g) 25.7 ± 0.4 (23.0-35.5) 

 
1 All values are means ± standard error of the mean (SEM) (range) 

kcal =kilocalorie, mg=milligram, g=gram 
Physical Activity 

Over one-third (39.6%) of self-reported forms throughout the study duration showed 

participants performed a moderate level of physical activity. This was followed by 35.8% of 

forms reporting high physical activity levels, and 24.5% reporting low physical activity. None of 

the participants engaged in high or moderate physical activity on the day before testing, as 

instructed. The reported levels of physical activity match national survey findings. Nationally, 

the majority of adults (< 30%) do not meet physical activity guidelines (HHS & USDA, 2015). 

Additionally, for adults following an exercise treatment plan for T2DM, this approach has the 

lowest adherence compared to diet or medication (World Health Organization, 2003; King et al., 

2009). 

Individuals with normal waist circumferences were more likely to perform high levels of 

physical activity, reporting high physical activity 87% of the time and 13% for low activity. 

Individuals with large waistlines were more likely to perform low or moderate levels of physical 

activity, reporting moderate physical activity 50% of the time, followed by 34% and 16% of the 

time for low and high physical activity, respectively.  
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Postprandial glucose (PPG) 

A general linear model analysis revealed significant interactions between time and diet as 

factors when evaluating differences in glucose values. There were no significant differences by 

gender, so the data were pooled for analysis. Wilks’ Lambda test results were significant among 

time points (P < 0.0005) as well as when looking at the interaction between time points and 

treatment type (P = 0.001), meaning the specific time point affects net glucose change, and 

effects are seen when considering time and treatment together too. Means of net glucose change 

for treatment type across time points with a MANOVA (Tukey HSD) showed significant 

differences in mean when comparing the control treatment to the whole lentil (P = 0.001) and 

whole pea (P = 0.012) treatments, meaning there was an overall difference between whole pulses 

and the carbohydrate-heavy control when looking at all the mean net glucose changes for all 

treatments. However, there were no significant differences among the other treatments based on 

overall pooled means. This means that there was something attributed to the whole pulses that 

the pulse flours did not share, or at least not to the same extent to make the flours significantly 

different from the control treatment. One apparent nutritional difference between the whole 

pulses and flours was total starch content, with the flours having more total starch. 

An additional nutritional difference may be related to the antinutrient content. Milling, 

specifically dehulling, and processing in general reduce polyphenols and lectins, both of which 

have normally positive effects on glycemic control when present (Lin et al., 2016; Singh et al., 

2017). Reductions of these antinutrient factors may explain why the pulse flours were not 

statistically different from the control treatment and produced higher PPG values than the whole 

pulses (with the exception of pea flour being higher than the whole peas at 120 minutes). 

Another difference is based on structure - the whole pulses should have intact cell walls, 

while the flours would not. The cell wall prevents starch degradation by digestive enzymes 



www.manaraa.com

75 
 

(Brummer et al., 2015), and a damaged one, as in the flours, would mean more starch is digested 

and released into the blood. Additionally, dehulling also reduces phenolics (Lin et al., 2016), 

which would lead to the same outcome. The relationship between the cell wall and starch 

degradations explains why the whole pulses yielded a lower response, as there was less starch 

degradation in these meals. Despite any potential distinctions between the whole pulses and 

pulse flours, these were not significant enough to be different from the flours looking at this level 

(all the means of net glucose change for treatment type pooled across time points). 

A profile plot (Figure 4.2) of the estimated marginal means of time points and treatments 

shows that the combination of treatment and time was not significant for the marginal means, 

meaning there was a clear influence from main effects of treatment and time, regardless of the 

time or the treatment. As expected, the treatment served, along with which time point is 

observed, translates to the net glucose changes seen. 

 

Figure 4.2. Estimated marginal means of time point and treatment type* 

*factor1: postprandial time points. 1 = 30 minutes, 2 = 60 minutes, 3 = 90 minutes, 4 = 120 
minutes, 5 = 150 minutes, 6 = 180 minutes. 
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Incremental changes in blood glucose for all treatments are presented in Table 4.5. 

Glucose levels <140 mg/dL after two hours indicate normal glucose tolerance, while levels ≥140 

and <200 mg/dL indicate impaired glucose tolerance (ADA, 2000). All of the participants 

exhibited impaired glucose tolerance after two hours, as expected with type 2 diabetes, 

confirming their qualification for this study. Clinically significant changes in blood glucose have 

been set at a decrease equivalent to ≥1 mmol/l (Hordern et al., 2008). In a study involving pleural 

glucose concentration, a difference of 1.0 mmol/L or greater (at or above 18 mg/dL) were 

considered clinically significant because of potential influences on clinical management 

(Rahman et al., 2008). The changes in mean blood glucose for this study were greater than 18 

mg/dL until 150 minutes postprandial, and thus are clinically relevant (Table 4.5). Variations 

among subjects may be explained by a faster gastric emptying rate of some participants 

(Sievenpiper et al., 2000). 

Following a statistically significant interaction between time and treatment, a one-way 

ANOVA was performed for individual time points (Table 4.5). The results showed significance 

for 30 minutes (P < 0.005), 60 minutes (P < 0.005), and 90 minutes (P = 0.006) (Figure 4.3).  

This means that there were treatments that had notable effects at certain time points. Significance 

was lost starting at 120 minutes postprandial, indicating an effect on glucose metabolism under 

120 minutes post meal consumption. A lack of significance starting at 120 minutes is not 

necessarily a negative observation. Elevated PPG has several negative implications on health, 

with the highest observed post-meal glucose peaks occurring within 1 hour and 15 minutes after 

eating a meal (Daenen et al., 2010). Because of the negative health implications with elevated 

PPG, the significant differences between the control and the pulses within the time period of 

interest (within 1 hour and 15 minutes) were clinically relevant. 
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Although significance was not continuous until 180 minutes, there were some noteworthy 

observations looking at the entire time span (0 to 180 minutes), regardless. The whole lentil 

trended lower than all other treatments for all time points, indicating there was some factor 

associated with whole lentils that was not present to the same extent (if at all) in the other pulses. 

The whole lentil treatment contained the largest amount of pulses (grams), though this likely 

does not explain this trend. The one distinction between the whole lentils and all the other 

treatments was that the lentils provided the most available CHO out of all the other pulse 

treatments. The lentils provided 19.6 g of available CHO, which the other pulses provided 16.3 

to 16.7 grams. Comparing the whole peas to their flour counterparts, the whole pulses trended to 

yield lower PPG for all time points, with the exception of similar values between the two pea 

treatments at 150 and 180 minutes. The whole pea and pea flour treatments were similar 

nutritionally, with total carbohydrates, fiber, available CHO, protein, and fat. The SDS or RS 

content of the two may be similar, accounting for the similar glycemic responses at 150 and 180 

minutes attributed to the time of starch digestion and amount.  

Another noteworthy observation is made when comparing the two flours, lentil flour 

trended to yield lower PPG up until 60 minutes. The lentil flours had a higher total starch content 

than the pea flour (Eurofins data) and while information on specific type of starch (SDS, RDS, or 

RS) is unavailable, the lentil flour likely had more SDS that was absorbed and digested after 60 

minutes than the pea flour. This coincides with the definition of SDS, as the term details the 

amount of starch hydrolyzed between 20 and 180 minutes (Englyst et al.,1992). If there was 

more SDS content in the lentil flours compared to the pea flours, it is a logical assumption that 

this type of starch explains the rising trend after 60 minutes. Further, these results suggest that 

the pea flour had more RDS than the lentil flours, since RDS is the amount of glucose released 
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after 20 minutes (Englyst et al., 1992). This could explain why the pea flour peaked higher at 

first compared to the lentil flour.  

Results with a Tukey HSD test are shown in Table 4.5. At 30 minutes, significant 

differences were found comparing the control to the whole lentil (P < 0.005), lentil flour (P = 

0.001), and whole pea (P < 0.005) treatments, but not the pea flour. The pea flour had the lowest 

pulse gram weight compared to the other pulse treatments, but there are no other differences 

based on the information at hand. Thus, an explanation for this may be due to one or several of 

the various factors that are still relatively unexplored (i.e., fiber, cell wall, etc.). For example, 

observations based on mineral content cannot be made, as this information is not available for 

the pulse meals (information was provided for raw whole pulses and the flours, not the boiled 

whole pulses), but this might be one of the mechanisms explaining nonsignificant differences 

between the pea flour and control. 

Then at 30 minutes, the PPG after eating pea flour was significantly different from the 

whole lentil (P = 0.001) and the whole pea meals (P = 0.014). Based on the information 

available, differences are a lower pulse gram weight for pea flour treatments and higher total 

starch than the other two treatments. The amount of total starch may be a key mechanism in 

explaining this difference at 30 minutes, with RDS likely being released and digested with the 

pea flour meals. The pea flour was not significantly different from the lentil flour, which was 

likely due to similar total starch contents (compared to the whole pulses). 

At 60 minutes, the control was significantly different from all treatments: whole lentil (P 

< 0.005), lentil flour (P = 0.010), whole pea (P < 0.005), and pea flour (P = 0.02). The pulse 

meals were different from the control treatment in virtually every way, except for the presence of 

available carbohydrates. The other nutrients present in pulses (i.e., protein, fiber) were most 
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likely responsible for the beneficial glycemic response at 60 minutes. These factors were not 

active at 30 minutes, suggesting they have a delayed, though still positive, effect. No significant 

differences were found among the pulse treatments. Again, this was likely because of their 

nutrient profiles being much more similar to each other than to the control treatment. At 90 

minutes, the control was only significantly different from the whole lentil (P = 0.003) and whole 

pea (P = 0.04) treatments. The two main differences between the whole pulses and the flours 

were that the whole pulses have a higher pulse gram weight and were lower in total starch. The 

amount of total starch, along with some other unexplored factors (i.e., SDS, RS, physical 

structure, digestive enzyme accessibility), are possibly attributed to this observation at 90 

minutes.  

Table 4.5. Incremental changes in blood glucose for all treatments1 

 Glucola 
control Whole lentil Lentil flour Whole pea Pea flour 

Fasting glucose 
(mg/dL) 

129.5 ± 10.3 130.9 ± 10.7 134.0 ± 7.2 130.5 ± 8.9 128.8 ± 9.8 

30 min glucose 
(mg/dL) 

74.8 ± 9.0 21.2 ± 3.8*** 41.3 ± 5.4** 29.2 ± 3.7*** 55.6 ± 5.4 

60 min glucose 
(mg/dL) 

109.0 ± 8.8 45.2 ± 7.3*** 67.2 ± 10.4* 51.6 ± 7.0*** 70.2 ± 8.6* 

90 min glucose 
(mg/dL) 

87.8 ± 11.5 38.3 ± 7.3** 61.7 ± 10.1 50.6 ± 6.6* 53.0 ± 9.3 

120 min glucose 
(mg/dL) 

45.1 ± 9.8 19.3 ± 6.1 40.0 ± 9.8 27.8 ± 5.4 22.8 ± 10.0 

150 min glucose 
(mg/dL) 

12.6 ± 8.1 1.1 ± 5.5 19.5 ± 9.6 5.4 ± 5.1 5.6 ± 9.4 

180 min glucose 
(mg/dL) 

-7.6 ± 6.6 -12.1 ± 4.9 -0.2 ± 8.3 -8.4 ± 5.2 -9.9 ± 7.2 

1All values are means ± standard error of the mean. 
* P <0.05, ** P <0.01, *** P <0.001 
Min=minutes, mg/dL=milligrams per deciliter 
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Figure 4.3. Effect of treatment on postprandial net glucose (n = 11)1 

1All values are means ± standard error of the mean (SEM). 
* P < 0.05, ** P <0.01, *** P <0.001 
  

Incremental areas under the curve for blood glucose were assessed between 0-60, 0-120 

and 0-180 minutes postprandial (Figure 4.3). A one-way ANOVA showed significance (P < 

0.005) between groups (treatments) for all the time increments. Table 4.6 shows the mean values 

for the time ranges. Post-hoc test Tukey HSD showed significant differences between the control 

mean and all pulse treatments at 0-60 minutes, with every P-values being < 0.0005, except for 

the pea flour (P = 0.017). At this time period, the nutritional profiles of the pulses were likely the 

cause for this difference. Additionally, at this increment, the lentil flour and pea flour were not 

significantly different from each other, though the pea flour was different from the whole peas (P 
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= 0.043) and whole lentils (P = 0.004). The flours had similar nutrient profiles, except there was 

more fiber and protein in the lentil flour but this did not appear to be significant at 0-60 minutes. 

Both flours had high total starch and were fairly similar in terms of minerals. Another possible 

explanation is related to the similar milling processes applied to both flours. This logically has an 

impact on the physical structure of the pulses and makes them fundamentally different from the 

whole pulse. As for differences between the pea flour and whole pulses, the pea flour has a 

higher total starch content. However, the lentil flour had the highest total starch content, but was 

not significantly different from the whole pulses. Based on this, there must be something else 

(not total starch) in play with the pea flour that made it different from the whole pulses, but not 

the lentil flour. At 0-120 minutes, the control was significantly different from all pulse treatments 

(whole lentil, lentil flour, whole pea, and pea flour with P-values of <0.0005, 0.006, <0.0005, 

and 0.007, respectively). There were no significant differences among the pulse treatments. At 

this time period (0-120 minutes), the nutrients in the pulse meals were most likely the reason for 

the positive glycemic responses (compared to the control). At 0-180 minutes, the control 

treatment was significantly different from the pulse treatments (whole lentil, whole pea, and pea 

flour with P-values of <0.0005, 0.002, and 0.040, respectively), except for the lentil flour. The 

lentil flour was not significantly different from any of the treatments. Some things that set the 

lentil flour apart from the other pulse treatments, and may explain why it was the only pulse 

treatment similar to the control at 0-180 minutes include that it had the highest fiber content (and 

thus the lowest available CHO), highest protein (though not considerably higher than the other 

pulse treatments), and highest total starch content. The fiber content was probably the reason 

why the lentil flour was similar to the control, but the difference was not significant enough to 
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make it different from the other pulses. There are likely other factors contributing to this 

observation. 

Table 4.6. Postprandial areas under the curve for blood glucose1,2 

 
 

Glucola 
Control Whole Lentil Lentil Flour Whole Pea Pea Flour 

0-60 min 

 
3090.0 ± 
369.9 
 

 
1322.1 ± 
191.8*** 

 

 
2245.9 ± 
305.4*** 

 

 
1648.6 ± 
189.4*** 

 

 
2719.1 ± 
268.7* 

 

0-120 min 9355.4 ± 
696.5 

3475.1 ± 
549.5*** 

5705.5 ± 
858.4** 

4355.5 ± 
543.3*** 

5760.3 ± 
717.8** 

0-180 
min 

 
10798.1 ± 
1040.7 
 

 
4027.5 ± 
688.9*** 

 

 
7109.1 ± 
1280.7 

 

 
5046.0 ± 
755.0** 

 

 
6660.4 ± 
964.7* 

 
1 All values are means ± standard error of the mean (SEM). 2 Mg * min/dL (calculated by the 
trapezoidal rule); * P <0.05, ** P <0.01, *** P <0.001 
 
 

 

Figure 4.4. Incremental area under the curve differences in net glucose 0-180 minutes 
postprandial (n = 11)1,2 

1All values are means ± standard error of the mean (SEM).2Mg * min/dL (calculated by the 
trapezoidal rule); * P <0.05, ** P <0.01, *** P <0.001 
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Differences in glycemic response between the pulses may be explained nutritionally, such 

as type of fiber (soluble or insoluble) or amount of resistant starch present. Differences may also 

be explained by milling. Milling results in the separation of starch granules from protein bodies, 

by increasing surface area (Hoover et al., 2010; Vaz Patto et al., 2015). This may increase the 

availability of starch to digestive enzymes. Further, particle size is reduced by milling. Larger 

particle sizes are thought to elicit a lower postprandial glycemic response, which was seen in the 

trends of our whole pulses. The pea flour had a larger particle size than the lentil flour, but 

generally had a larger glycemic response, contrary to the expected outcome. Thus, there may be 

something beyond particle size that is influencing the postprandial glycemic response. From all 

of the observations, the mechanisms behind the glycemic response are multifaceted and cannot 

be explained based on one factor alone. 

Statistical Power 

Statistical power indicates the likelihood of “correctly rejecting a false null hypothesis 

and thus detecting a genuine effect” (Richardson, 2011). Observed power values were computed 

by SPSS. Our statistical power was between 0.938-1.00, indicating at least a 94% probability of 

making correct assumptions from our statistical test results. Our power was above 0.80, which is 

a common goal for clinical trials (Gupta et al., 2016). 

Another measure computed by SPSS was partial eta squared values. Partial eta squared 

statistics are commonly used by researchers to interpret the effect size of clinical trial data 

(Ferguson, 2009). This measure is used for complex models with more than one factor (Sánchez 

& Cervantes, 2016) and is commonly reported due to SPSS capabilities (Fritz et al., 2012). A 

comparison of partial eta squared to Cohen’s 1988 criteria of effect sizes is documented (small = 

0.0099; medium = 0.0588; large = 0.1379) (Richardson, 2011). Our partial eta squared values 

were well above the large cut offs. 
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Wilks’ Lambda was used as a multivariate test with α = 0.05 and showed significant 

effects from time points with a value of 0.063 and an observed power of 1.0. Partial eta squared 

value for this was 0.937, indicating 94% of variability is attributed to the time points. A test of 

between-subjects (treatment type) showed a power of 0.938. Likewise, an observed power was 

0.983 when looking at time point x treatment meal type with a Wilks’ Lambda value of 0.371. 

The partial eta squared value for this was 0.219. 

Further, power of within-subjects (net glucose changes at postprandial time points) 

effects using Greenhouse-Geisser (adjusts for lack of sphericity) was 1.0. The Greenhouse-

Geisser test had partial eta squared values for time points and time point x treatment meal 

interactions of 0.805 and 0.304, respectively. This indicates that 81% of variation is associated 

with the time point, and the time point combined with the treatment type accounts for 30% of 

variation. 
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CHAPTER 5.    CONCLUSIONS & RECOMMENDATIONS FOR FUTURE RESEARCH 

Findings from dietary forms and physical activity questionnaires show that the guidelines 

for physical activity and dietary recommendations were not met by the participants. Both diet 

and exercise are significant factors that impact glycemic control, for better or worse. Considering 

the rising prevalence of diabetes, and specifically T2DM, these are urgent concerns that must be 

addressed. The subpar quality of the American diet can be improved with the incorporation of 

pulses. 

Although pulses are nutritionally dense, this does not mean Americans will consume 

pulses in the form they have traditionally been presented (i.e., whole pulses). Appeal of products 

mainly comes from taste, and pulses do not necessarily meet this, with their low fat and high 

fiber status. With the rise in pulse processing and more specifically pulse flour processing, the 

question of the integrity of pulses comes into question. It has been documented that whole pulses 

are beneficial for adults with T2DM, but this question is inconclusive with pulse fractions such 

as flours. Commercial flours (i.e., split flours) have hulls removed, losing a large portion of the 

pulse fiber. Information comparing split and whole flours in glycemic response studies was not 

readily found, suggesting this is a research gap which future work can explore. This study’s 

pulse flours trended lower than the control treatment, but commercial flours should be used to 

comment on industry practices. 

Additionally, overall diet must be taken into consideration. American diets tend to be 

high in fat, refined grains, and added sugar. As seen in previous research (Winham et al., 2007; 

Winham et al., 2017), pulses have varying effects when eaten with high glycemic index foods. 

The glycemic index of our current consumption patterns, as well as the nature of our foods, will 

influence the effectiveness of implementing pulses in novel ways. Further, the amount of pulse 
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flour used in this study is considerably higher than what is common for products on the market 

or likely plausible in terms of functionality. The question of commonly consumed serving sizes 

will influence the validity of health claims capitalizing on the beneficial glycemic properties of 

pulses. This is also another research gap, and very relevant in the context of our diets. 

This study found that meals containing pulses yielded glycemic response-lowering 

properties compared to a reference food item in adults with type 2 diabetes. Likening the Glucola 

50 g control beverage to other carbohydrate-heavy and calorie dense foods, such as refined grain 

products in the American diet, pulses play an evident role in our health. It is important to note 

that every pulse treatment was significantly different from the control treatment at some point. A 

lower glycemic response is likely attributed to the nutrient dense profile of pulses, with their 

fiber and protein contents. This finding highlights the nutritional benefits pulses provide over 

carbohydrate dense foods.  

The main effects of the pulse flours were not significantly different from the control 

treatment or the whole pulses, but the main effects of the whole pulses were different from the 

control treatment. This illustrates the complexity of the glycemic response and the multiple 

factors influencing it. Though main effects of whole pulses were similar to the pulse flours, there 

were some differences at the time point level. These differences become critical when 

considering short-term and long-term glucose control, in particular when concerned about high 

blood sugar peaks. This also shows that some attributes influencing the glycemic response are 

time dependent, such as the absorption and digestion of starches. Overall trends showed lower 

postprandial glucose values for the whole pulses compared to the pulse flours. Regardless of 

statistical significance, the findings show that health benefits of pulses are maximized when they 

are consumed whole. 
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While there is substantial information presented in this thesis, there is still a level of 

uncertainty with some relevant factors. For example, there are some missing details on fiber (i.e., 

insoluble or soluble fiber and SDS, RDS, or RS). Future research should include an in-depth 

nutrient analysis to determine type of fiber present in pulses. Going further, a complete picture of 

starch analysis is worth looking into. This study did not have information available on the RS for 

the cooked pulses, or other starch types such as SDS and RDS. 

An investigation into the cell wall structure and digestibility is also warranted. Previous 

literature illustrates the importance of processing on the accessibility of digestive enzymes, as 

well as other factors such as dietary fiber (including RS) and antinutrient components. Digestion 

is interconnected with several things: starch, polyphenols, particle size, among several other 

factors. The importance of digestion cannot be downplayed. While our study shows that whole 

pulses produce a lower glycemic response, further work is required on processing to effectively 

evaluate the significance and implications of pulse flour processing on the postprandial glycemic 

response.  
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APPENDIX A.    INSTITUTIONAL REVIEW BOARD APPROVAL 
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APPENDIX B.    STUDY PROCEDURES AND PAYMENT SCHEDULE 
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APPENDIX C.    PARTICIPANT INSTRUCTIONS 
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APPENDIX D.    RECRUITMENT HALF PAGE FLYER 
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APPENDIX E.    RECRUITMENT FULL PAGE FLYER 
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APPENDIX F.    MEDICAL HISTORY QUESTIONNAIRE 
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APPENDIX G.    FOOD FREQUENCY QUESTIONNAIRE 
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APPENDIX H.     SAMPLE SIZE FORMULA 

δ = (tΓα, df - tΓβ, df) * P
Q
∗ 𝑠𝑑 

δ = difference between treatment means 

sd = standard deviation 

α = 0.05, 1 – β = 80% conventional values for clinical studies (Hickey, Grant, Dunning, & Siepe, 

2018). 

df = degrees of freedom 
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APPENDIX I.    DRY WEIGHT BASIS EQUIVALENCY CALCULATIONS 

Lentils: 

One cup of cooked lentils were determined to be 160 g through multiple trials, which 

means that ½ cup was 80 g. This is the pulse amount used for the whole lentil treatment. To 

determine an equivalent ½ cup dry weight basis amount for lentil flour, the following 

calculations were made based on moisture content values from Eurofins analysis. The moisture 

content for the samples were 54.9% for the boiled lentils and 10.1% for the lentil flour: 

Amount of dry solids in 100 g cooked lentils = 100 g – 54.9 g = 45.1 g dry solids per 100 

g cooked lentils 

Amount of dry solids in 160 g cooked lentils per cup = 160 g cooked lentils/cup * 45.1 g 

dry solids/100 g cooked = 72.16 dry cooked lentil solids per cup 

Amount of dry solids in 100 g lentil flour =  100 g – 10.1 g = 89.9 g dry solids per 100 g 

lentil flour 

  Flour equivalent amount to cooked lentils = 72.16 g dry cooked lentils solids per 1 

cup/(89.9 g dry solids/100 g lentil flour) = 80.27 g dry lentil flour solids per 1 cup 

 Thus, 40.13 g of lentil flour was used for an equivalent ½ cup dry weight basis to cooked 

lentils. 

 

Peas: 

One cup of cooked peas were determined to be 152 g, meaning that ½ cup was 76 g. This 

is the pulse amount used for the whole pea treatment. To determine an equivalent ½ cup dry 

weight basis amount for pea flour, the following calculations were made based on moisture 
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content values from Eurofins analysis. The moisture content for the samples were 60.8% for the 

boiled lentils and 9.2% for the pea flour: 

Amount of dry solids in 100 g cooked peas = 100 g – 60.8 g = 39.2 g dry solids per 100 g 

cooked peas 

Amount of dry solids in 152 g cooked peas per cup = 152 g cooked peas/cup * 39.2 g dry 

solids/100 g cooked = 59.58 g dry cooked pea solids per cup 

Amount of dry solids in 100 g pea flour = 100 g – 9.2 g = 90.8 g dry solids per 100 g pea 

flour 

  Flour equivalent amount to cooked peas = 59.58 g dry cooked pea solids per 1 cup/(90.8 

g dry solids/100 g pea flour) = 65.62 g dry pea flour solids per 1 cup 

 Thus, 32.81 g of pea flour was used for an equivalent ½ cup dry weight serving to cooked 

peas. 
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APPENDIX J.    FOOD LOG 
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APPENDIX K.    INTERNATIONAL PHYSICAL ACTIVITY QUESTIONNAIRE 
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APPENDIX L.    ANTHROPOMETRIC METHODS 
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APPENDIX M.    STANDARD OPERATING PROCEDURE FOR OBTAINING AND 
WORKING WITH HUMAN BLOOD SAMPLES 
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